Looking to cut sheet metal with precision and efficiency? Look no further than laser-cutting technology.
However, as with any cutting process, there are common issues that can arise, potentially affecting the quality of the cut.
Fear not, as we have compiled a comprehensive guide to help you overcome these challenges and achieve a high-quality cut every time.
From cutting perforation technology to the selection of puncture points, we cover all the essential aspects of laser cutting that you need to know.
Discover the two fundamental methods for laser cutting without the use of a stamping device, and learn how to transition from pulse perforation to continuous cutting for the best results.
We also delve into the causes and solutions for issues such as burrs on the workpiece and incomplete cutting states of the laser.
Whether you’re a seasoned professional or new to the world of laser cutting, our guide has everything you need to know to achieve the perfect cut every time.
So, let’s dive in and explore the world of sheet metal laser cutting together!

Cutting perforation technology.
As a general rule, drilling a small hole in the sheet metal is necessary for any hot cutting process, with only a few exceptions where cutting can start from the edge of the sheet metal.
In the past, a hole was punched using a punch mold in a laser stamping machine before the laser cutting process began.
There are two fundamental methods for laser cutting without the use of a stamping device:
Blasting perforation
During continuous laser irradiation, the material forms a pit in the center, which is then quickly removed by the oxygen flow accompanying the laser beam, resulting in the formation of a hole.
The size of a typical hole is determined by the plate thickness.
The average diameter of the blasting perforation is roughly half the thickness of the plate, meaning that perforations in thicker plates are larger and not circular.
This method should not be used on parts that require high precision in machining, and is only suitable for scrap material.
Additionally, the oxygen pressure used during the perforation process is the same as that used in cutting, which results in excessive splashing.
Pulse perforation
A pulsed laser with a peak power is utilized to melt or vaporize a small amount of material. Common air or nitrogen is employed as an auxiliary gas to reduce the expansion of the hole due to exothermic oxidation. The gas pressure is lower than that used in cutting with oxygen. Each pulse of the laser produces small particles that are expelled and penetrate gradually. As a result, perforating a thick plate can take several seconds.
Once the perforation is complete, the auxiliary gas is immediately replaced with oxygen for cutting. This results in a smaller perforation diameter and a higher quality perforation compared to blasting. To achieve this, the laser must not only have a higher output power, but also precise time and space characteristics of the beam. The general flow CO2 laser does not meet these requirements.
Additionally, pulse perforation requires a reliable gas control system to regulate the type of gas, pressure, and perforation time. To achieve high-quality cuts during pulse perforation, transitioning from pulse perforation to continuous cutting must be taken seriously.
In theory, cutting conditions such as focal length, nozzle position, and gas pressure during the acceleration period can be altered. However, in industrial production, it is more practical to change the average power of the laser. This can be achieved by altering the pulse width, frequency, or both. Research has shown that the latter approach yields the best results.
Analysis of the deformation of small holes cutting (small diameter and thickness).
The reason for this is because when machining a hole, the high-power laser cutter does not use the method of blasting perforation, but instead employs pulse perforation (soft puncture). This leads to laser energy being too concentrated in a small area, causing the non-processing area to char and resulting in deformation of the hole and degradation of processing quality.
In this case, it is necessary to switch from pulse perforation (soft puncture) to blasting perforation (ordinary puncture) in the processing procedure to resolve the issue.
On the other hand, for less powerful laser cutting machines, it is advisable to use pulse perforation to achieve a better surface finish for small hole cutting.
The workpiece has a burr when cutting low carbon steel, how to solve it.
According to the working and design principles of CO2 laser cutting, the following are analyzed as the main reasons for the formation of burrs on the workpiece:
- Incorrect laser focus position: A focus position test is required to adjust the offset based on the focus.
- Insufficient laser output power: It is necessary to check if the laser generator is functioning properly. If it is, verify if the output value of the laser control button is set correctly and adjust accordingly.
- Slow cutting speed: The cutting line needs to be speeded up through operation control.
- Poor cutting gas purity: High-quality cutting gas needs to be provided.
- Migration of laser focus: A focus location test is needed to adjust the offset based on the focus.
- Instability caused by the long-term operation of the laser cutter: The laser cutter needs to be shut down and restarted.
Analysis of the burr on the workpiece when cutting stainless steel and aluminum zinc plate with the laser cutter.
In case of the above situation, when cutting low-carbon steel, you should initially consider the factors that may cause burrs.
However, simply increasing the cutting speed may not necessarily solve the issue, as the increase in speed may not always allow for piercing the plate. This is especially prominent when processing aluminum-zinc plates.
In such a scenario, other factors of the laser cutting machine should also be taken into consideration, such as the need for replacing the nozzle and checking the stability of the guide movement.
Analysis of the incomplete cutting state of the laser.
After analysis, the following are identified as the main causes of unstable processing:
Incorrect selection of laser nozzle for plate thickness;
Cutting speed is too high and needs to be decreased.
It’s also crucial to note that when cutting a 5mm carbon steel plate with a laser cutting machine, it is necessary to replace the 7.5″ focal length laser lens.
The solution for non-normal spark appears when cutting low carbon steel.
This situation can have an impact on the quality of the cut sections of the parts. If other parameters are normal, you should consider the following potential causes:
- Loss of the laser nozzle, which should be promptly replaced.
- If a new nozzle isn’t replaced, the cutting gas pressure should be increased.
- The screw thread connecting the nozzle and laser cutting head may be loose. If this is the case, you should stop cutting immediately, inspect the connection of the laser head, and tighten the screw thread.
Selection of puncture points during laser cutting.
The Working Principle of Laser Beam Cutting:
During the cutting process, the material is subjected to continuous laser radiation, which results in a depression in the center. The working airflow with the laser beam then removes the melted material quickly, creating a hole. This hole resembles a threaded hole in thread cutting.
The laser beam uses this hole as the starting point for contour cutting. Usually, the direction of the laser beam in the flight path is perpendicular to the tangent direction of the cut contour of the processed part.
As a result, from the moment the laser beam penetrates the steel plate to the time of cutting the contour, there is a big change in the cutting speed in the direction of the vector. Specifically, the vector rotates 90°, causing the tangential direction perpendicular to the cut profile to overlap with the cut contour. In other words, the angle with the contour tangent becomes 0°.
This rapid change in the direction of the vector movement of the laser beam results in a rough cut surface on the cut section of the processed material.
In general, when there are no roughness requirements for the surface cutting in the design, manual control will not be set in the laser cutting programming, and the control software will automatically generate puncture points. However, when the design requires a high roughness for the cutting section, it is important to take this issue into consideration.
Manual adjustment of the starting position of the laser beam, i.e., the manual control of the puncture point, is usually necessary. This involves moving the puncture point generated by the laser program to a reasonable position that meets the surface precision requirements of the machined parts.
Fiber laser 3000 w 1.5 ×3 m specification and price of machine and shipping to the port of ain sokhna
Thanks
Thanks for your inquiry, we will contact you soon.
Hi there, my name is Lucas and I’m a team lead at our company of which has 2 fiber optic lasers we use to cut product.
We have lots of issues cutting aluminum and anodized aluminum any where from .040 – .375 thicknesses, leaving very bad burrs and also welding and I’m wondering if you can give me some tips on fixing this issue?
I would greatly appreciate anything that you can help with, thank you for your time and kindness on helping me get these answers that I’m going to need.
Kind regards, lucas
There is a relationship between the laser power, cutting quality, cutting speed, and cutting thickness. You need to analyze and compare data of different configurations of lasers (power, core diameter) and cutting head (focusing and expanding beam ratio, focusing method) and data such as air pressure, focal length, and moving speed to obtain a set of systematic cutting data through experiments.
Then combine the process database with auxiliary equipment to realize the high-speed cutting process of aluminum plate without burr.
What we can do for you is recommend several articles on our site and then you need to test by yourself:
https://www.machinemfg.com/laser-cutting-quality-control/
https://www.machinemfg.com/laser-cutting-basics/
https://www.machinemfg.com/fiber-laser-cutting/
https://www.machinemfg.com/fiber-laser-cutting/