

E21S Operation Manual

(Version: V1.05)

ESTUN AUTOMATION CO., LTD

— Total Solution Supplier / / / / /

Contents

Preface	1
Chapter 1 Product Overview	2
1.1 Product introduction	2
1.2 Operation panel	2
1.3 Displayer	4
Chapter 2 Operation Instruction	5
2.1 Basic operation procedure	5
2.2 Programming	6
2.2.1 Single-step programming	6
2.2.2 Multi-step programming	8
2.3 Parameter setting	11
2.4 Manual movement	14
Chapter 3 Alarm	15
Appendix Common fault and troubleshooting	17

Preface

This manual describes operation of E21S numerical control device and is meant for operators who are instructed for operation of the device. Operator shall read this manual and know operation requirements before using this device.

Copy right is preserved by ESTUN. It is not allowed to add or delete part or all of the manual content without ESTUN's consent. Do not use part or all of manual content for the third party's design.

E21S device provides complete software control and has no mechanical protection device for operator or the tool machine. Therefore, in case of malfunction, machine tool must provide protection device for operator and external part of the machine tool. ESTUN is not responsible for any direct or indirect losses caused by normal or abnormal operation of the device.

ESTUN preserves the right to modifying this manual in the event of function adding or print error.

Chapter 1 Product Overview

1.1 Product introduction

This product is equipped with the shear machine dedicated numerical control device which is applicable to various users. Based on ensuring work precision, the cost of numerical control shearing machine is reduced significantly.

Features and functions of this product are as following:

- Back gauge can be controlled.
- Cut-angle can be controlled.
- Cut-gap can be controlled.
- Stroke time can be controlled.
- Intelligent positioning control.
- Unilateral and bidirectional positioning which eliminates spindle clearance effectively.
- Retract functions.
- · Automatic reference searching.
- One-key parameter backup and restore.
- Fast position indexing.
- 40 programs storage space, each program has 25 steps.
- Power-off protection.

1.2 Operation panel

Operation panel is shown in Figure 1-1.

Figure 1-1 Operation panel

Functions of panel keys are described in Table 1-1.

Table 1-1 Description of key functions

Key	Function description
	Delete key: delete all data in input area on left bottom of
	displayer.
	Enter key: confirm the input content. If no content is input, the key
	has the similar function to direction key.
0	Start key: automatic start-up, top left corner of the key is operation
	indicator LED. When operation is started, this indicator LED is on.
	Stop key: stop operation, top left corner of the key is Stop
©	indicator LED. When initialize normal start-up and no operation,
	this indicator LED is on.
	Left direction key: page forward, cursor remove
	Right direction key: page backward, cursor remove
	Down direction key: select parameter downward
P	Function switch: switch over different function pages
±	Symbolic key: user input symbol, or start diagnosis.
0 ~ 9	Numeric key: when setting parameter, input value.
	Decimal point key: when set up parameter, input decimal point.
	Manual movement key: in case of manual adjustment, make
+	adjustment object move in forward direction at low speed.
	Manual movement key: in case of manual adjustment, make
	adjustment object move in backward direction at low speed.
	High speed selection key: in case of manual adjustment, press
	this key and press simultaneously, make adjustment object
++ ()	move in increasing direction at high speed, then press
	make adjustment object move in decreasing direction at high
	speed.

1.3 Displayer

E21S numerical control device adopts 160*160 dot matrix LCD displayer. The display area is shown in **Figure 1-2**.

Title bar ←	Single			
	X:			200.00
	A:	50.00	G:	9.98
	XP:			20.00
Parameter	DX:	2	F:	0
display area	CUT:	3.00	PP:	0
	DLY:	1.00	CP:	14
Status bar -	Ø: R:	ange: 0~99	999.999mı	n

Figure 1-2 Display area

- Title bar: display relevant information of current page, such as its name, etc.
- Parameter display area: display parameter name, parameter value and system information.
- Status bar: display area of input information and prompt message, etc.

The paraphrases of shortening on this page are as shown in Table 1-2.

Table 1-2 The paraphrases of shortening

Shortening	Description
X	The current backgauge position
А	The current cutting angle
G	The current gap distance
XP	The desired backgauge position
DX	Backgauge retract distance
CUT	Cutting delay
DLY	Retracting delay
F	Function output value
PP	Preset workpiece
СР	Current workpiece

Chapter 2 Operation Instruction

2.1 Basic operation procedure

Basic switch over and operation procedure of the device is shown in Figure 2-1.

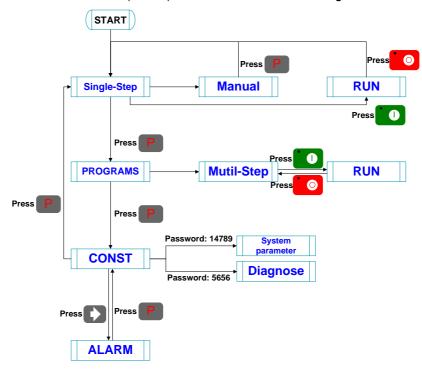


Figure 2-1 Basic Operational Flow

2.2 Programming

The device has two programming methods, which are single-step programming and multi-step programming. User can set up programming according to actual demand.

2.2.1 Single-step programming

Single-step programming is generally used for processing single step to finish work piece processing. When controller is power on, it will automatically enter single-step program page.

Operation steps

Step 1 After starting up, the device will enter setting up page of single-step program automatically, as shown in **Figure 2-2**.

Single				
X:			200.00	
A:	50.00	G:	9.98	
XP:			20.00	
DX:	2	F:	0	
CUT:	3.00	PP:	0	
DLY:	1.00	CP:	14	
Range: 0~9999.999mm				

Figure 2-2 Single-step program setting page

Step 2 Click , select parameter that needs to be set up, press numerical key to input program value, press to complete input.

[Note] Parameter can only be set when Stop indicator is on.

Setting range of singe step parameter is shown in Table 2-1.

Table 2-1 Set up range of singe step parameter

Parameter name	Unit	Range	Remarks
Х	mm/inch	-	Current position of X axis, unable to be
			modified.
А	0	-	Current position of A axis, unable to be
			modified.https://www.machinemfg.com/
G	mm/inch	-	Current position of G axis, unable to be
			modified.
XP	mm/inch	0~9999.999	Program position of X axle.
DX	mm/inch	0~9999.999	Retract distance of X axle;

Parameter name	Unit	Range	Remarks
DLY	s	0~9.99	In case of single step, delay time for X axle
			concession.
CUT	s	0~9.99	There is a delay time for the cutter goes to the
			next work-step, after it leaves the top dead
			center.
			[Note] Only the parameter CutDelay En. is
			set to 1, displaying this parameter.
F	None	0~3	Functions configure output.
PP	None	0~9999	Number of preset work piece.
СР	None	0~9999	Number of current work piece.

Step 3 Press , system will execute according to this program, as shown in Figure 2-3.

Single		
X: A: G: C:		200.0 3.0 9.99 0
PP:	0	metric

Figure 2-3 Single step operation page

----End

Operation example

On single-step program page, program back gauge position to 80.00mm, retract distance to 50mm, concession waiting time to 2s, and work piece to 10.

Operation steps are shown in Table 2-2.

Table 2-2 Operation steps of single step example

Operation steps	Operation		
Step 1	Click, select "XP" parameter.		
Step 2	Input 80.00 by numerical key.		
Step 3	Click confirm setting of this parameter.		

Operation steps	Operation
Step 4	Click, select "DX" parameter, "DLY" parameter, "PP" parameter respectively.
Step 5	Set up parameter to 50mm, 2s, 10 by numerical key.
Step 6	Click system execute according to this program.

2.2.2 Multi-step programming

Multi-step program is used for processing single work piece of different processing steps, realize consecutive implementation of multi-steps, and improve processing efficiency.

Operation step

- **Step 1** Power on, the device enters to single-step parameter set up page automatically.
- Step 2 Click, switch to program manage page, as shown in Figure 2-4.

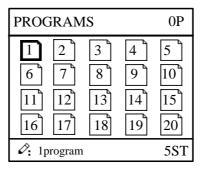


Figure 2-4 Program management page

- Step 3 Click , select program serial number, or input program number directly, such as input "1".
- Step 4 Click em, enter multi-step program setting page, as shown in Figure 2-5.

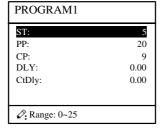


Figure 2-5 Multi-step program setting page

- Step 5 Click , select multi-step programming parameter which requires set up, input setting up value, click , and the configuration takes effect.
- Step 6 In completion of set up, click , enter step parameter set page, as shown in Figure 2-6.

PROGRAM1	1/5ST
X:	50.00
XP:	9.000
DX:	25.00
RP:	54
F:	1
Ø Range: 0~999	9.999mm

Figure 2-6 Step parameter set page

- Step 7 Click, select step parameter that needs to be set up, input program value, click, and the setup takes effect.
- Step 8 Click to switch over between steps. If the current step is the first step, click to enter the last page of step parameter setting; if the current step is the last one,

click to enter the first page of step parameter setting.

Multi-step parameter setting range is shown in Table 2-3.

Table 2-3 Multi-step parameter setting range

Parameter name	Unit	Range	Remarks
ST	None	0-25	Set up total processing step number of this
			program
PP	None	0~99999	Number of work piece to be processed,
			decreasing piece when more than zero;
			negative increasing count.
СР	None	0~99999	Number of finished work piece
DLY	s	0~9.99	Time between retract signal and concession
			execution.

Parameter name	Unit	Range	Remarks
CtDly	s	0~9.99	There is a delay time for the cutter goes to the
			next work-step, after it leaves the top dead
			center.https://www.machinemfg.com/
			[Note] Only the parameter CutDelay En. is
			set to 1, displaying this parameter.
Х	mm/inch	None	Current position of X axle, can't be modified.
XP	mm/inch	0~9999.999	Program position of X axle.
DX	mm/inch	0~9999.999	Distance of X axle concession.
RP	-	1~99	Repeat times required by this step.
F	-	0~3	F function configure output

Step 9 Click , system will operate according to this program, as shown in Figure 2-7.

PROGRAM1	Rp: 1/54
X: A: G: C:	200.0 3.0 9.99 0
PP: 12345	St: 1/ 5

Figure 2-7 Multi-step programming operation page

----End

Operation example

[Background] One work piece requires processing 50 as shown below;

- First shear: 50mm;
- Second shear: 100mm;
- Third shear: 300mm;

[Analysis] according to work piece and technological conditions of machine tool:

- First shear: X axle position is 50.0mm, concession 50mm;
- The second shear: X axle position is 100.0mm, concession 50mm;
- The third shear: X axle position is 300.0mm, concession 50mm;

Edit processing program of this work piece on No. 2 program.

Operation procedure is shown in Table 2-4.

Table 2-4 Operation steps of multi-step programming example

Operation step	Operation	
Step 1	On single step parameter setting page, press to enter	
	program selection page.	
Step 2	Input "2", click enter multi-step general parameter setting	
	page of program 2.	
Step 3	Select "Program step", input "3", click the setting takes	
	effect.	
Step 4	Select "PP", input "50", click the setup takes effect.	
Step 5	Similar to step 3 and step 4, set "DLY" to 3 respectively.	
Step 6	Click to enter first step setup page of step parameter.	
Step 7	Select "XP", input 50, click, the setup takes effect.	
Step 8	Similar to step 7, set up "concession distance" and "repeat	
	times" to 50, 1 respectively.	
Step 9	Click to enter second step setup page of step parameter,	
	the setup method is similar to that of step one.	
Step 10	Click again, to enter third step setup page of step	
	parameter, the setup method is similar to that of step one and	
	step two.	
Step11	Click , return to setup page of the first step.	
Step12	Click, system will operate according to this program.	

[Note]

- In completion of multi-step programming, you should back to starting step before launching the system; otherwise, the program will start position processing at current step.
- Press left and right direction key to circulate page turning and browsing among all step parameters.
- Program can be called and revised again.
- In completion of processing all work pieces (50 in the example), the system stops automatically. Restart directly will start another round of processing 50 work pieces.

2.3 Parameter setting

User can setup all parameters required for normal operation of the system, including system parameter, X axle parameter.

Step 1 On program management page, click to enter programming constant page, as shown in Figure 2-8. On this page, programming constant can be set.

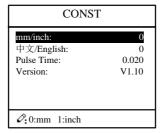


Figure 2-8 Programming constant page

Range of programming constant setup is shown in Table 2-5.

Table 2-5 Range of programming constant setup

Parameter name	Unit	Range	Default	Remarks
X-tea. in	mm	0-9999.99	0	Input current X axle position when
				teach enable.
mm/inch	-	0 or 1	0	• 0: mm
				• 1: inch
中文/English	-	0 or 1	0	• 0: 中文
				• 1: English
X-tea. In	mm	0~9999.999	10	Input current X axle position when
				teach enable.
G-tea. In	mm	0~9.99	0	Input current G axle position when
				teach enable.
Pulse Time	s	0.000~1.000	0.020	The duration of the pulse signal.
Version	-	None	-	Software version information, V
				refers to version, 1 indicates version
				number, and 0 indicates version
				level.

Step 2 Input password "1212", click to enter system parameter setting page, as shown in Figure 2-9.

SYS PARA	1/ 2PG
X-digits:	3
X-safe:	1.000
Step delay:	3.33
CutDelay En.:	1
MaxCut Delay:	9.99
X-tea.in:	200
G-tea.in:	5
Ø: Range: 0~3	

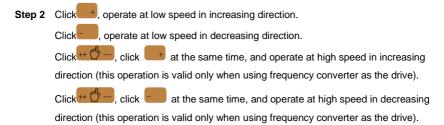
Figure 2-9 System parameter setting page

Step 3 Step up parameter, parameter setup range is shown in **Table 2-6**.

Parameter	Unit	Range	Default	neter description Description
X-digits	-	0-3	1	Decimal point displayed by X axle position
				parameter
V		0.0000.000	40	'
X-safe	mm	0-9999.999	10	X axle keeps low speed in this range
Step delay	S	0-9.99	0.5	Interval between valid change step signal and
				change step operation executed
CutDelay	-	0 or 1	0	0: disable
En.				• 1: enable
MaxCut	s	0~9.99	0	Set the maximum cut delay time.
Delay				
A-Enable	-	0 or 1	1	0: disable
				• 1: enable
A-Max	0	2.50 or 3.00	3.00	The max value of the Cut-Angle.
G-Enable	-	0 or 1	1	0: disable
				• 1: enable
G-Encoder	-	0 or 1	0	0: Decrease
Dir.				1: Increase
GMF	-	1~99999999	40	Multiplication factor of G-axis, used for the
				convert between pulses and mm.
GDF	-	1~99999999	1	Division factor of G-axis, used for the convert
				between pulses and mm.

Step 4 Click, return to programming constant page.

----End


2.4 Manual movement

In single-step mode, axle movement can be controlled by pressing key manually. This method helps user to adjust machine tool and work piece. https://www.machinemfg.com/

Step 1 On single step parameter setup page, click or to enter manual page, as shown in Figure 2-10.

MANUAL		
X:	50.00	
A:	0.00	
G:	9.98	
⊘: X current pos.		

Figure 2-10 Manual page

Step 3 Click return to single step parameter setting page.

----End

Chapter 3 Alarm

The device can detect internal or external abnormity automatically and send out alarm prompt. Alarm message is available on alarm list.

- **Step 1** On programming management page, click to enter programming constant page.
- **Step 2** On programming constant page, click to enter "Alarm history" page to view all alarm history.

As shown in **Figure 3-1**, the latest 6 alarms, alarm number and causes can be viewed on this page.

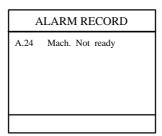


Figure 3-1 Alarm history page

Alarm history and message is shown in Table 3-1.

Table 3-1 Alarm number and alarm message

Alarm number	Alarm name	Alarm description
A.01	Pieces reached	Count reaches preset value
A.02	X.Pos < min.	X-axis current position beyond the
		minimum limit
A.03	X.Pos > max.	X-axis current position beyond the
A.03	X.F 05 > IIIdX.	maximum limit
A.04		The current position of the X-axis beyond
		the soft limit
A.05	A Axis MAX	A-axis current position beyond the
		maximum limit
	A Axis MIN	A-axis current position beyond the
A.06	A AXIS WIIN	minimum limit
A.07	G Axis MAX	G-axis current position beyond the
		maximum limit
A.08	G Axis MIN	G-axis current position beyond the
	G AXIS IVIIN	minimum limit

Alarm number	Alarm name	Alarm description
A.11	Finished work	When count reaches preset value,
A.II	Finished work	system shut down automatically.
A.12	Out of UDP	In single step and multistep mode, slider
A.12	Out of ODP	is not on upper dead center.
A.22	Encoder abnor.	Encoder voltage is too low
A.24	Mach. not ready	The pump signal is invalid
A.25	Angle Abnormal	Angle input error
A.26	X Stop Err	The backgauge motor is abnormal stop.
	X V2 Err	The speed of backgauge motor is
A.28		abnormal on the Low-Speed Mode.
A.29	X V3 Err	The speed of backgauge motor is
A.29	A V3 EII	abnormal on the High-Speed Mode.
		X-axis position has exceeded the zero
A.32	XPos < 0	point in manual mode, you should turn
		back.
A.41	Para. error	-
A.42	Power off	-
A.43	System fault	-

Appendix Common fault and troubleshooting

Fault phenomena	Trouble shooting		
When power on, the device will not display. When X axle programming is operating, back gauge motor does not	The electrode of power supply terminal is connected error; please see the information of power nameplate. Voltage is too low. Electrical outlet is not connected. Two motors are reversed. Reconnect.		
move, but Y AXIS motor moves. When program is operating, motor does not move.	Check whether mechanical part has been locked or slider returns to upper dead center. Check whether the motor wiring is connected well.		
Motor can't switch from high speed to low speed.	Check whether high-low speed signal has been sent or motor power is too small. Check whether the parameter of distance conversion is correct.		
When system is in multi-step programming, the program can't change step.	Check when slider is on upper dead center, STEP terminal is connected to +24V or not.		
When system is in multi-step programming, the program can't count. When programming is operating, the device loses control.	Check when slider is on upper dead center, STEP terminal is connected to +24V or not. Check whether encoder cable is connected or not. Check whether the motor-direction wiring is correct (X+, X-, A+, A-, G+, G-).		
When programming is operating, system actual position will not display or change.	Check whether encoder wiring is correct or encoder cable is connected well.		

ESTUN AUTOMATION CO., LTD

Add: 155 Jiangjun Road, Jiangning Development Zone, Nanjing 211106, P.R.China

TEL: 025-52785866 FAX: 025-52785992 WEB: www.estun.com Email: info@estun.com

