Grundlagen des Abschreckens: Alles, was Sie wissen müssen

Haben Sie sich schon einmal gefragt, wie man Stahl unglaublich stark und gleichzeitig flexibel machen kann? In diesem Blogbeitrag erfahren Sie mehr über die faszinierende Welt des Abschreckens, einem wichtigen Wärmebehandlungsverfahren im Maschinenbau. Sie erfahren mehr über verschiedene Abschreckmethoden und ihre einzigartigen Anwendungen und erhalten so ein tieferes Verständnis dafür, wie alltägliche Werkzeuge und Maschinen für optimale Leistung hergestellt werden.

10 Arten von Abschreckmethoden in der Wärmebehandlung

Inhaltsverzeichnis

Was ist Abschrecken?

Abschrecken ist ein Wärmebehandlungsverfahren. Bei Stahl beinhaltet das Abschrecken das Erhitzen auf eine Temperatur oberhalb der kritischen Temperatur Ac3 (bei untereutektoiden Stählen) oder Ac1 (bei übereutektoiden Stählen), das Halten für eine bestimmte Zeit, um eine vollständige oder teilweise Austenitisierung zu ermöglichen, und das anschließende schnelle Abkühlen unter Ms (oder in der Nähe von Ms bei Isothermie) mit einer Geschwindigkeit, die schneller ist als die kritische Abkühlungsgeschwindigkeit, wodurch die Umwandlung in Martensit (oder Bainit).

Abschrecken wird auch als Bezeichnung für Wärmebehandlungsverfahren verwendet, die eine Lösungsbehandlung oder eine schnelle Abkühlung von Materialien wie AluminiumlegierungenKupferlegierungen, Titanlegierungen und gehärtetes Glas.

Abschreckmethoden im Wärmebehandlungsprozess

Beim Abschrecken handelt es sich um ein Wärmebehandlungsverfahren, bei dem der Stahl über seine kritische Temperatur erhitzt, eine bestimmte Zeit lang gehalten und dann mit einer Geschwindigkeit abgekühlt wird, die über der kritischen Abkühlgeschwindigkeit liegt, um ein überwiegend martensitisches, unausgeglichenes Gefüge zu erhalten (obwohl je nach Bedarf auch Bainit oder ein einphasiger Austenit erzielt werden kann).

Das Abschrecken ist die am häufigsten angewandte Methode bei der Wärmebehandlung von Stahl.

Bei der Wärmebehandlung von Stahl gibt es ungefähr vier grundlegende Verfahren: GlühenNormalisieren, Abschrecken und Anlassen.

Glühen

Dabei wird das Werkstück auf eine geeignete Temperatur erwärmt, für eine vom Werkstoff und der Werkstückgröße abhängige Dauer gehalten und dann langsam abgekühlt (langsamste Abkühlgeschwindigkeit). Ziel ist es, das innere Gefüge des Metalls auf oder in die Nähe des Gleichgewichts zu bringen, um eine gute Prozess- und Anwendungsleistung zu erreichen oder das Gefüge für ein weiteres Abschrecken vorzubereiten.

Normalisierung

Nach dem Erhitzen des Werkstücks auf eine geeignete Temperatur wird es an der Luft abgekühlt. Die Wirkung des Normalisierens ist ähnlich wie beim GlühenSie erzeugt jedoch eine feinere Struktur. Sie wird in der Regel zur Verbesserung der Zerspanungsleistung von Werkstoffen eingesetzt und manchmal auch als abschließende Wärmebehandlung für Teile mit weniger hohen Anforderungen verwendet.

Anlassen

Um die Sprödigkeit von Stahlteilen zu verringern, werden die abgeschreckten Teile vor dem Abkühlen über einen längeren Zeitraum auf einer Temperatur gehalten, die über der Raumtemperatur, aber unter 710℃ liegt. Dieser Vorgang wird als Anlassen bezeichnet.

Abschrecken

Hierbei handelt es sich um ein Wärmebehandlungsverfahren, bei dem das Werkstück zur Austenitisierung erwärmt und anschließend in geeigneter Weise abgekühlt wird, um eine Martensit- oder Bainitstruktur zu erhalten. Zu den gängigen Methoden gehört die Wasserabschreckung, Ölabschreckungund Luftabschreckung.

Glühen, Normalisieren, Abschrecken und Anlassen sind die "vier Feuer" der integralen Wärmebehandlung. Abschrecken und Anlassen sind eng miteinander verwandt, werden oft zusammen verwendet und sind beide unverzichtbar.

Es gibt zehn Methoden für das Abschrecken im Wärmebehandlungsprozess, die da wären:

  • Einfaches Abschrecken (mit Wasser, Öl oder Luft);
  • Unterbrochene Abschreckung;
  • Martempering;
  • Martemperierung unterhalb der Frau Punkt;
  • Isothermisches Abschrecken von Bainit;
  • Zusammengesetzte Abschreckung;
  • Vorgekühlte isothermische Abschreckung;
  • Verzögertes Abschrecken durch Abkühlung;
  • Abschrecken und Selbsttemperieren;
  • Strahlabschreckung.

1. Abschrecken mit einem Medium (Wasser, Öl, Luft)

Bei diesem Verfahren wird das Werkstück auf die Abschrecktemperatur erwärmt und anschließend durch Eintauchen in ein Abschreckmedium schnell abgekühlt. Dies ist das einfachste Abschreckverfahren und wird in der Regel für einfach geformten Kohlenstoffstahl und legierter Stahl Werkstücke. Die Wahl des Abschreckmediums richtet sich nach Faktoren wie dem Wärmeübergangskoeffizienten, der Härtbarkeit, der Größe und der Form der Teile.

111 Abschreckung mit einem Medium (Wasser, Öl, Luft)

Abb. 1 Abschreckung mit einem Medium (Wasser, Öl, Luft)

2. Unterbrochene Abschreckung

Bei der Wärmebehandlung wird das auf die Abschrecktemperatur erwärmte Werkstück in einem starken Kühlmedium schnell auf den Punkt nahe dem Martensitbeginn (MS) abgekühlt. Anschließend wird das Werkstück in einem langsameren Kühlmedium langsam auf Raumtemperatur abgekühlt, wodurch eine Reihe unterschiedlicher Abschrecktemperaturen und idealer Abkühlgeschwindigkeiten entsteht.

Diese Methode wird für Werkstücke mit komplizierte Formen oder große Werkstücke aus kohlenstoffreichem Stahl, legiertem Stahl und Kohlenstoff-Werkzeugstahl. Zu den gängigen Kühlmedien gehören Wasser-Öl, Wasser-Nitrat, Wasser-Luft und Öl-Luft. Wasser wird in der Regel als schnelles Kühlmedium verwendet, während Öl oder Luft als langsameres Kühlmedium eingesetzt wird. Luft wird weniger häufig verwendet.

3. Martemperierung

Der Stahl wird austenitisiert und dann für eine bestimmte Zeit in ein flüssiges Medium (Salz- oder Alkalibad) mit einer Temperatur, die etwas höher oder niedriger als der obere Martensitpunkt des Stahls ist, getaucht. Anschließend wird der Stahl an der Luft abgekühlt, und die unterkühlte Austenit wandelt sich langsam in Martensit um.

Diese Methode wird im Allgemeinen für kleine Werkstücke mit komplexen Formen und strengen Verformungsanforderungen verwendet. Auch Werkzeuge und Matrizen aus Schnellarbeitsstahl und hochlegiertem Stahl werden in der Regel nach dieser Methode abgeschreckt.

4. Gradiertes martensitisches Abschrecken unterhalb des Ms-Punktes

Das Werkstück wird im Bad schnell abgekühlt, wenn die Badtemperatur unter dem MS-Punkt (Martensit-Startpunkt) und über dem MF-Punkt (Martensit-Endpunkt) liegt. Dies führt zu demselben Ergebnis wie die Verwendung einer größeren Badgröße.

Dieses Verfahren wird üblicherweise für Werkstücke aus Stahl mit niedriger Härtbarkeit und großen Abmessungen verwendet.

5. Isothermisches Abschrecken von Bainit

Das Werkstück wird zur isothermen Behandlung in ein Bad mit einer niedrigeren Bainit-Temperatur abgeschreckt, was die Bildung von Unterbainit bewirkt. Dieses Verfahren wird in der Regel durchgeführt, indem das Werkstück 30 bis 60 Minuten lang im Bad verbleibt.

Das isotherme Abschrecken des Bainitprozesses besteht aus drei Schritten:

  • Austenitisierung
  • Abkühlungsbehandlung nach dem Austenitisieren
  • Bainitische Bainitisierung

Diese Methode wird üblicherweise für kleine Teile aus legiertem Stahl und Stahl mit hohem Kohlenstoffgehalt sowie für duktile Teile verwendet. Eisengussteile.

6. Zusammengesetzte Abschreckung

Martensit mit einem Volumenanteil von 10% bis 30% erhält man durch Abschrecken des Werkstücks unterhalb des MS-Punktes, gefolgt von einer isothermen Behandlung im unteren Bainitbereich.

Diese Methode wird üblicherweise für Werkstücke aus legiertem Werkzeugstahl verwendet.

7. Vorgekühlte isothermische Abschreckung

Dieses Abschreckverfahren wird auch als "Step-up austempering" bezeichnet. Bei diesem Verfahren werden die Teile zunächst in einem Bad mit niedrigerer Temperatur (über MS) abgekühlt und dann in ein Bad mit höherer Temperatur überführt, um eine isotherme Umwandlung von Austenit.

Dieses Verfahren eignet sich für Stahlteile mit geringer Härtbarkeit oder großen Abmessungen sowie für Werkstücke, die austemperiert werden müssen.

8. Pelayed Kühlung Abschrecken

Beim vorgekühlten isothermen Abschrecken werden die Teile mit Luft, heißem Wasser oder einem Salzbad auf eine Temperatur knapp über Ar3 oder Ar1 vorgekühlt. Dann wird eine einmediale Abschreckung durchgeführt.

Diese Methode wird häufig für Teile mit komplexen Formen, erheblichen Dickenunterschieden und minimalen Verformungsanforderungen verwendet.

9. Abschrecken und Selbsthärten

Beim Abschrecken und Selbstanlassen werden alle Werkstücke erwärmt, aber nur die zu härtenden Teile (in der Regel die Arbeitsteile) zum Abkühlen während des Abschreckens in eine Abschreckflüssigkeit getaucht.

Sobald das Glühen der nicht eingetauchten Teile verschwunden ist, wird der Abschreckungsprozess zur Luftkühlung sofort beendet.

Bei dieser Methode wird die Wärme vom Zentrum auf die Oberfläche übertragen, um sie zu härten. Sie wird üblicherweise für Werkzeuge verwendet, die Schlägen standhalten müssen, wie z. B. Meißel, Stanzen, Hämmer usw.

10. Strahlabschreckung

Die Abschreckmethode, bei der Wasser auf das Werkstück gesprüht wird, kann in Bezug auf den Wasserdurchfluss je nach gewünschter Abschrecktiefe angepasst werden. Durch die Strahlabschreckung wird die Bildung eines Dampffilms auf der Oberfläche des Werkstücks vermieden, was zu einer tieferen Härteschicht im Vergleich zur normalen Abschreckung führt. Wasserabschreckung.

Diese Methode wird hauptsächlich für die lokale Oberflächenabschreckung verwendet.

Zweck des Abschreckens

Der Zweck des Abschreckens besteht darin, die Umwandlung von unterkühltem Austenit in Martensit oder Bainit herbeizuführen, was zu einer martensitischen oder bainitischen Struktur führt. Das anschließende Anlassen bei unterschiedlichen Temperaturen kann die Steifigkeit, Härte und Verschleißfestigkeit erheblich erhöhen, Ermüdungsfestigkeitund die Zähigkeit des Stahls und erfüllt die unterschiedlichen Anforderungen an verschiedene mechanische Teile und Werkzeuge. Durch das Abschrecken können auch besondere physikalische und chemische Eigenschaften wie Ferromagnetismus und Korrosionsbeständigkeit bestimmter Spezialstähle erreicht werden.

Beim Abschrecken handelt es sich um ein Verfahren zur Wärmebehandlung von Metallen, bei dem ein Metallwerkstück auf eine geeignete Temperatur erwärmt, eine Zeit lang gehalten und dann durch Eintauchen in ein Abschreckmedium schnell abgekühlt wird. Zu den üblicherweise verwendeten Abschreckmedien gehören Salzlake, Wasser, Mineralöl und Luft. Das Abschrecken kann die Härte und die Verschleißfestigkeit von Metallwerkstücken verbessern und wird häufig bei verschiedenen Werkzeugen und Formen eingesetzt, Messwerkzeugeund verschleißfeste Teile (wie Zahnräder, Rollen, aufgekohlte Teile usw.).

Durch Abschrecken und anschließendes Anlassen bei unterschiedlichen Temperaturen kann die Festigkeit des Metalls erheblich verbessert und seine Zähigkeit und Dauerfestigkeit verringert werden. Mit diesem Verfahren kann ein Gleichgewicht zwischen diesen Eigenschaften (umfassende mechanische Leistung) erreicht werden, um den unterschiedlichen Nutzungsanforderungen gerecht zu werden.

Darüber hinaus können durch das Abschrecken bestimmte physikalische und chemische Eigenschaften von Stählen mit besonderen Leistungen erzielt werden, wie z. B. die Verstärkung des Ferromagnetismus von dauermagnetischem Stahl, die Verbesserung der Korrosionsbeständigkeit von rostfreiem Stahl, usw. Das Abschrecken wird hauptsächlich für Stahlteile verwendet.

Wenn gewöhnlicher Stahl über seine kritische Temperatur erhitzt wird, wandelt sich das bei Raumtemperatur vorhandene Gefüge vollständig oder weitgehend in Austenit um. Anschließend wird der Stahl durch Eintauchen in Wasser oder Öl schnell abgekühlt, wodurch sich der Austenit in Martensit verwandelt. Martensit hat im Vergleich zu anderen Gefügen im Stahl die höchste Härte. Die schnelle Abkühlung beim Abschrecken bewirkt Eigenspannung im Werkstück, die, wenn sie groß genug sind, dazu führen können, dass sich das Werkstück verzieht, verdreht oder sogar reißt. Daher muss eine geeignete Kühlmethode gewählt werden.

Auf der Grundlage der Kühlmethode können Abschreckprozesse in vier Kategorien unterteilt werden: Abschrecken mit einer Flüssigkeit, Abschrecken mit zwei Medien, Abschrecken mit Martensitgradienten und isothermisches Abschrecken von Bainit.

Abschreckungsprozess

Der Abschreckprozess umfasst drei Stufen: Erhitzen, Halten und Abkühlen. Hier werden die Grundsätze für die Auswahl der Prozessparameter für diese drei Stufen am Beispiel des Abschreckens von Stahl vorgestellt.

Abschrecken Heiztemperatur

Ausgehend vom kritischen Punkt der Phasenumwandlung in Stahl zielt die Erwärmung während des Abschreckens auf die Bildung feiner und gleichmäßiger austenitischer Körner ab, so dass nach dem Abschrecken eine feine martensitische Struktur entsteht.

Der Bereich der Abschreckheiztemperatur für Kohlenstoffstahl ist in der Abbildung "Abschreckheiztemperatur" dargestellt. Das in dieser Abbildung dargestellte Prinzip für die Auswahl der Abschrecktemperatur gilt auch für die meisten legierten Stähle, insbesondere für niedrig legierte Stähle. Die Erwärmungstemperatur für untereutektoiden Stahl liegt 30-50℃ über der Ac3-Temperatur.

Chinesische NoteKritischer Punkt
/℃
Temperatur der Abschreckung
/℃
AelAes(Acm)
20735855890~910
45724780830~860
60727760780~830
T8730750760~800
T12730820770~810
40Cr743782830~860
60Si2Mn755810860~880
9CrSi770870850~870
5CrNiMo710760830~860
3Cr2W8V81011001070~1130
GCr15745900820~850
Cr12MoV810/980~1150
W6Mo5Cr4V2830/1225~1235

Aus der Abbildung "Abschreckungstemperatur" ist ersichtlich, dass sich der Stahl bei hoher Temperatur im einphasigen Austenitbereich (A) befindet, weshalb er als vollständig abgeschreckt bezeichnet wird. Wenn die Erwärmungstemperatur des untereutektoiden Stahls höher als die Ac1- und niedriger als die Ac3-Temperatur ist, dann wird die zuvor bestehende Proeutektoidferrit wird bei hohen Temperaturen nicht vollständig in Austenit umgewandelt, was als unvollständiges (oder unterkritisches) Abschrecken bezeichnet wird. Die Abschrecktemperatur von übereutektoidem Stahl liegt 30-50℃ über der Ac1-Temperatur; dieser Temperaturbereich liegt im Zweiphasenbereich von Austenit und Zementit (A+C).

Daher ist das normale Abschrecken von übereutektoidem Stahl immer noch ein unvollständiges Abschrecken, und das nach dem Abschrecken erhaltene Gefüge ist Martensit, der auf der Zementitmatrix verteilt ist. Dieses Gefüge hat eine hohe Härte und eine hohe Verschleißfestigkeit. Bei übereutektoidem Stahl löst sich bei einer zu hohen Erhitzungstemperatur zu viel des proeutektoiden Zementits auf oder löst sich sogar vollständig auf, woraufhin die Austenitkörner wachsen und die Kohlenstoffgehalt von Austenit ebenfalls zunimmt.

Nach dem Abschrecken erhöht die große Martensitstruktur die Eigenspannung in den Mikrobereichen des abgeschreckten Stahls, erhöht die Anzahl der Mikrorisse und steigert die Neigung des Werkstücks, sich zu verformen und zu reißen. Da die Kohlenstoffkonzentration im Austenit hoch ist, sinkt der Martensitpunkt, die Menge des Restaustenits nimmt zu, und die Härte und Verschleißfestigkeit des Werkstücks nehmen ab. Die Abschrecktemperatur gängiger Stähle ist in der Abbildung "Abschreckheiztemperatur" dargestellt, und die Tabelle zeigt die Heiztemperatur für das Abschrecken gängiger Stähle.

In der Praxis muss die Wahl der Heiztemperatur an die jeweiligen Bedingungen angepasst werden. Wenn zum Beispiel der Kohlenstoffgehalt im untereutektoiden Stahl an der unteren Grenze liegt, wenn die Ofenbeschickung groß ist und wenn die Tiefe der Abschreckhärtungsschicht des Teils erhöht werden soll, kann die obere Grenztemperatur gewählt werden; wenn die Werkstückform kompliziert ist und die Verformungsanforderungen streng sind, sollte die untere Grenztemperatur gewählt werden.

Quenching Holding

Die Haltezeit für das Abschrecken wird durch verschiedene Faktoren bestimmt, wie z. B. die Heizart der Anlage, die Größe des Werkstücks, die Zusammensetzung des Stahls, die Menge der Ofenbeschickung und die Leistung der Anlage. Bei der Durchhärtung besteht der Zweck des Haltens darin, die Innentemperatur des Werkstücks gleichmäßig zu konvergieren.

Bei allen Arten des Abschreckens hängt die Haltezeit letztlich davon ab, dass eine gute Abschreckheizstruktur im gewünschten Abschreckbereich erreicht wird. Erhitzen und Halten sind wichtige Schritte, die die Qualität des Abschreckens beeinflussen. Der durch die Austenitisierung erreichte Gefügezustand wirkt sich direkt auf die Leistung nach dem Abschrecken aus. Die Austenitkorngröße von allgemeinen Stahlteilen wird auf 5-8 Stufen kontrolliert.

StahlsorteIsotherme Temperatur
/℃
Isotherme Zeit
/min
KlasseIsotherme Temperatur
/℃
Isotherme Zeit
/min
65280-35010-20GCr9210~23025-45
65Mn270-35010-209SiCr260-28030-45
55Si2300-36010-20Cr12MoV260-28030-60
60Si2270-34020-303Cr2W8280-30030-40
T12210~22025-45

Abschrecken Kühlen

Damit sich die Hochtemperaturphase des Stahls - der Austenit - während des Abkühlungsprozesses in die metastabile Niedrigtemperaturphase - den Martensit - umwandeln kann, muss die Abkühlungsgeschwindigkeit größer sein als die kritische Abkühlungsgeschwindigkeit des Stahls. Während des Abkühlungsprozesses des Werkstücks besteht ein gewisser Unterschied zwischen der Abkühlungsgeschwindigkeit an der Oberfläche und im Kern. Wenn dieser Unterschied groß genug ist, kann er dazu führen, dass das Werkstück mit einer Abkühlgeschwindigkeit abkühlt, die größer ist als die kritische Abkühlungsgeschwindigkeit um sich in Martensit umzuwandeln, während der Kern, der weniger als die kritische Abkühlungsrate aufweist, sich nicht in Martensit umwandeln kann.

Um sicherzustellen, dass sich der gesamte Querschnitt in Martensit umwandelt, muss ein Abschreckmedium mit ausreichender Kühlleistung gewählt werden, damit der Kern des Werkstücks eine ausreichend hohe Abkühlgeschwindigkeit hat. Ist die Abkühlgeschwindigkeit jedoch hoch, können die durch ungleichmäßige Wärmeausdehnung und -kontraktion im Inneren des Werkstücks verursachten inneren Spannungen dazu führen, dass sich das Werkstück verformt oder reißt. Daher ist es wichtig, das Abschreckmedium und die Abkühlungsmethode unter Berücksichtigung der beiden oben genannten widersprüchlichen Faktoren vernünftig auszuwählen.

In der Abkühlphase geht es nicht nur darum, eine vernünftige Struktur für die Teile zu erhalten und die erforderliche Leistung zu erzielen, sondern auch die Größe und Formgenauigkeit der Teile zu erhalten. Sie ist ein wichtiges Glied im Abschreckprozess.

Härte des Werkstücks

Die Härte des abgeschreckten Werkstücks beeinflusst die Wirkung des Abschreckens. Die Härte des abgeschreckten Werkstücks wird im Allgemeinen durch seinen HRC-Wert bestimmt, der mit einem Rockwell-Härteprüfer gemessen wird. Der HRA-Wert kann für dünne harte Stahlplatten und oberflächengehärtete Werkstücke gemessen werden, während für gehärtete Stahlplatten mit einer Dicke von weniger als 0,8 mm, oberflächengehärtete Werkstücke mit einer flachen Schicht und gehärtete Stabstahl mit einem Durchmesser von weniger als 5 mm können die HRC-Werte mit einem Rockwell-Härteprüfer an der Oberfläche gemessen werden.

Wenn Schweißen von Kohlenstoffstahl und bestimmte legierte Stähle können in der Wärmeeinflusszone abschrecken und hart werden, was zu Kaltrissen führen kann. Dies gilt es zu verhindern, wenn die Schweißverfahren.

Aufgrund der Härte und Sprödigkeit des Metalls nach dem Abschrecken kann die erzeugte Oberflächeneigenspannung zu kalte Risse. Das Anlassen kann als eine der Methoden zur Beseitigung von Kaltrissen eingesetzt werden, ohne die Härte zu beeinträchtigen.

Das Abschrecken ist eher für Teile mit geringer Dicke und kleinem Durchmesser geeignet. Bei größeren Teilen ist die Abschrecktiefe nicht ausreichend, und das Aufkohlen hat das gleiche Problem. Zu diesem Zeitpunkt sollte man in Erwägung ziehen, dem Stahl Legierungen wie Chrom beizumischen, um die Festigkeit zu erhöhen.

Das Abschrecken ist eines der grundlegenden Mittel zur Verfestigung von Stahlwerkstoffen. Martensit in Stahl ist die härteste Phase in eisenbasierten Mischkristallstrukturen, so dass Stahlteile durch Abschrecken eine hohe Härte und eine hohe Festigkeit erhalten können. Martensit ist jedoch sehr spröde, und im Inneren des Stahls treten nach dem Abschrecken große innere Spannungen auf, so dass er sich nicht für die direkte Anwendung eignet und angelassen werden muss.

Verschiedene Arten von Abschreckungsmethoden

Abschrecken eines einzelnen Mediums: Das Werkstück wird in einem Medium, z. B. Wasser oder Öl, gekühlt. Die Vorteile sind einfache Bedienung, leichte Mechanisierung und breite Anwendung. Der Nachteil ist, dass das Abschrecken in Wasser große Spannungen verursacht, wodurch das Werkstück anfällig für Verformungen und Risse wird; das Abschrecken in Öl hat eine langsame Abkühlgeschwindigkeit, einen kleinen Abschreckdurchmesser und es ist schwierig, große Werkstücke abzuschrecken.

Double-Medium Quenching: Das Werkstück wird zunächst in einem Medium mit starker Kühlleistung auf etwa 300℃ abgekühlt und dann in einem Medium mit schwächerer Kühlleistung gekühlt. Dieses Verfahren kann die durch die martensitische Umwandlung verursachten inneren Spannungen wirksam reduzieren und die Tendenz zur Verformung und Rissbildung des Werkstücks verringern.

Stufenweises Abschrecken: Das Werkstück wird in einem Salz- oder Alkalibad bei niedriger Temperatur abgeschreckt, wobei die Temperatur nahe dem Ms-Punkt liegt. Das Werkstück bleibt 2-5 Minuten auf dieser Temperatur und wird dann an der Luft abgekühlt.

Isothermes Abschrecken: Das Werkstück wird in einem isothermen Salzbad abgeschreckt, wobei die Salzbadtemperatur im unteren Bereich der Bainitzone liegt (etwas höher als Ms). Das Werkstück bleibt lange Zeit bei dieser Temperatur, bis die Bainitumwandlung abgeschlossen ist, und wird dann an der Luft abgekühlt.

Abschrecken der Oberfläche: Die Oberflächenabschreckung ist ein Verfahren, bei dem die Oberflächenschicht eines Stahlstücks teilweise bis zu einer bestimmten Tiefe abgeschreckt wird, während der Kern ungeschreckt bleibt.

Induktionshärtung: Bei der induktiven Erwärmung werden durch elektromagnetische Induktion Wirbelströme im Werkstück erzeugt, um es zu erwärmen.

Kryogenes Abschrecken: Dies beinhaltet das Eintauchen in eine stark kühlende Eiswasserlösung als Abschreckungsmedium.

Partielle Abschreckung: Dabei werden nur die Teile des Werkstücks abgeschreckt, die gehärtet werden müssen.

Abschrecken mit Gaskühlung: Bezieht sich speziell auf das Erhitzen im Vakuum und das Abschrecken in einem mit hoher Geschwindigkeit zirkulierenden Unterdruck-, Normaldruck- oder Hochdruck-Neutral- und Inertgas.

Abschrecken mit Luftkühlung: Dabei wird zwangsgeführte Luft oder Druckluft als Kühlmedium zum Abschrecken verwendet.

Abschrecken von Salzlake: Dabei wird eine Salzwasserlösung als Kühlmedium für die Abschreckung verwendet.

Abschrecken der organischen Lösung: Dabei wird eine wässrige Lösung eines organischen Polymers als Kühlmedium für die Abschreckung verwendet.

Sprühabschrecken: Dabei wird ein Flüssigkeitsstrahl als Kühlmedium für die Abschreckung verwendet.

Heißes Bad Kühlung: Dabei wird das Werkstück in einem heißen Bad abgeschreckt, z. B. in geschmolzenem Salz, geschmolzenem Alkali, geschmolzenem Metall oder Hochtemperaturöl.

Doppel-Flüssigkeitsabschreckung: Nach dem Erhitzen des Werkstücks zur Austenitbildung wird es zunächst in ein Medium mit starker Kühlleistung getaucht, und wenn die martensitische Umwandlung bevorsteht, wird es zum Abkühlen sofort in ein Medium mit schwacher Kühlleistung überführt.

Abschrecken unter Druck: Nach dem Erhitzen des Werkstücks zur Bildung von Austenit wird es unter bestimmten Vorrichtungen abgeschreckt. Spannenmit dem Ziel, den Verzug bei der Abschreckung zu verringern.

Durchhärtung: Dabei wird das Werkstück von der Oberfläche bis zum Kern vollständig abgeschreckt.

Isothermes Abschrecken: Das Werkstück wird schnell auf das Temperaturintervall für die Bainitumwandlung abgekühlt, um die Isothermie nach dem Erhitzen zur Austenitbildung aufrechtzuerhalten, so dass der Austenit zu Bainit wird.

Stufenweises Abschrecken: Nach dem Erhitzen des Werkstücks zur Bildung von Austenit wird es für eine bestimmte Zeit in ein Alkali- oder Salzbad mit einer Temperatur, die etwas höher oder niedriger als der M1-Punkt ist, getaucht, und nachdem das gesamte Werkstück die mittlere Temperatur erreicht hat, wird es zum Abkühlen an der Luft herausgenommen, um Martensit zu erhalten.

Abschrecken bei niedriger Temperatur: Werkstücke aus untereutektoidem Stahl werden nach dem Austenitisieren im Temperaturbereich Ac1-Ac3 abgeschreckt, um Martensit- und Ferritstrukturen zu erhalten.

Direktes Abschrecken: Dabei wird das Werkstück nach der Aufkohlung direkt abgeschreckt.

Doppelte Abschreckung: Nach dem Aufkohlen des Werkstücks wird es zunächst bei einer höheren Temperatur als Ac3 austenitisiert und dann abgeschreckt, um das Kerngefüge zu verfeinern. Anschließend wird es bei einer etwas höheren Temperatur als Ac3 austenitisiert, um das aufgekohlte Schichtgefüge zu verfeinern.

Selbstkühlendes Abschrecken: Nachdem das Werkstück schnell erwärmt wurde, um lokal oder an der Oberfläche zu austenitisieren, breitet sich die Wärme aus dem erwärmten Bereich von selbst auf den nicht erwärmten Bereich aus, wodurch der austenitisierte Bereich schnell abkühlt.

Quenching Anwendung

Das Abschrecken ist in der modernen mechanischen Fertigungsindustrie weit verbreitet. Wichtige Maschinenteile, insbesondere Stahlteile, die in Automobilen, Flugzeugen und Raketen verwendet werden, sind fast alle abgeschreckt worden. Um die unterschiedlichen technischen Anforderungen der verschiedenen Teile zu erfüllen, wurden verschiedene Abschreckverfahren entwickelt. Zum Beispiel gibt es je nach den zu behandelnden Teilen eine Gesamt-, Teil- und Oberflächenabschreckung; je nachdem, ob die Phasenumwandlung während der Erwärmung vollständig ist, gibt es eine vollständige und eine unvollständige Abschreckung (bei untereutektoidem Stahl wird diese Methode auch als unterkritisches Abschrecken bezeichnet); je nach dem Inhalt der Phasenumwandlung während der Abkühlung gibt es eine gestufte Abschreckung, eine isotherme Abschreckung und eine Abschreckung mit Unterdrehzahl.

Aufgrund der Eigenschaften und Einschränkungen der einzelnen Abschreckmethoden werden sie alle unter bestimmten Bedingungen eingesetzt, wobei die Induktionserwärmung und die Flammenabschreckung am häufigsten verwendet werden. Die Laser- und die Elektronenstrahl-Erwärmung sind sich schnell entwickelnde Methoden zur Abschreckung durch Erwärmung mit hoher Energiedichte. Da sie einige Eigenschaften aufweisen, die andere Erwärmungsmethoden nicht haben, ziehen sie die Aufmerksamkeit auf sich.

Das Oberflächenhärten wird häufig bei Maschinenteilen aus vergütetem Stahl mit mittlerem Kohlenstoffgehalt oder aus Sphäroguss eingesetzt. Denn der Vergütungsstahl mit mittlerem Kohlenstoffgehalt kann nach der Vorbehandlung (Anlassen oder Normalisieren) und dem anschließenden Oberflächenhärten hohe mechanische Eigenschaften im Kern und eine hohe Härte (>HRC 50) und Verschleißfestigkeit an der Oberfläche beibehalten. Zum Beispiel Werkzeugmaschinenspindeln, Zahnräder, Kurbelwellen von Dieselmotoren, Nockenwellen usw. Grundsätzlich kann das Oberflächenhärten bei perlitisch-ferritischem Eisen auf der Basis GraugussSphäroguss, formbares Gusseisen, legiertes Gusseisen usw., die der Zusammensetzung von Stahl mit mittlerem Kohlenstoffgehalt entsprechen. Die Prozessleistung von duktilem Gusseisen ist die beste, und es hat auch hohe umfassende mechanische Eigenschaften, so dass es am häufigsten verwendet wird.

Nach kohlenstoffreicher Stahl ist oberflächengehärtet, obwohl die Oberflächenhärte und die Verschleißfestigkeit verbessert sind, sind die Plastizität und die Zähigkeit des Kerns relativ gering, so dass das Oberflächenhärten von kohlenstoffreichem Stahl hauptsächlich für Werkzeuge, Messwerkzeuge und hoch kaltgehärtete Walzen verwendet wird, die kleinen Stößen und wechselnden Belastungen ausgesetzt sind.

Da der Verfestigungseffekt nach der Oberflächenabschreckung von kohlenstoffarmen Stählen nicht signifikant ist, wird sie nur selten eingesetzt.

Vergessen Sie nicht: Teilen ist wichtig! : )
Shane
Autor

Shane

Gründerin von MachineMFG

Als Gründer von MachineMFG habe ich mehr als ein Jahrzehnt meiner Karriere der metallverarbeitenden Industrie gewidmet. Meine umfangreiche Erfahrung hat es mir ermöglicht, ein Experte auf den Gebieten der Blechverarbeitung, der maschinellen Bearbeitung, des Maschinenbaus und der Werkzeugmaschinen für Metalle zu werden. Ich denke, lese und schreibe ständig über diese Themen und bin stets bestrebt, in meinem Bereich an vorderster Front zu bleiben. Lassen Sie mein Wissen und meine Erfahrung zu einem Gewinn für Ihr Unternehmen werden.

Das könnte Ihnen auch gefallen
Wir haben sie speziell für Sie ausgewählt. Lesen Sie weiter und erfahren Sie mehr!

3 Arten von Eloxalfehlern in Aluminiumlegierungen

Achtung an alle Maschinenbauingenieure und Fertigungsfachleute! Haben Sie mit lästigen Eloxalfehlern bei Ihren Aluminiumprodukten zu kämpfen? Dann suchen Sie nicht weiter! In diesem Blogbeitrag tauchen wir tief in die...

Steifigkeit vs. Elastizitätsmodul: Der Unterschied wird erklärt

Haben Sie sich schon einmal gefragt, warum sich manche Materialien leicht biegen lassen, während andere starr bleiben? Dieser Blog taucht in die faszinierende Welt des Elastizitätsmoduls und der Steifigkeit ein und enträtselt ihre entscheidende Rolle in der Technik. Von...

Was ist Rundheit und wie kann man sie messen?

Haben Sie sich jemals gefragt, was einen perfekten Kreis ausmacht? In der Welt des Maschinenbaus ist die Rundheit ein entscheidendes Konzept, das die Leistung und Langlebigkeit rotierender Bauteile beeinflusst. Diese...
10 Methoden zum Entgraten (Entfernen von Metallgraten)

13 Methoden zum Entfernen von Metallgraten (Entgraten)

In der heutigen schnelllebigen Fertigungswelt ist effizientes Entgraten von entscheidender Bedeutung. Bei den zahlreichen verfügbaren Methoden kann die Wahl der richtigen Methode entmutigend sein. In diesem Blogbeitrag werden wir verschiedene Entgrattechniken...
14 Arten von Lagern Merkmale, Unterschiede und Verwendungszwecke

14 Arten von Lagern und ihre Anwendungen

Haben Sie sich schon einmal gefragt, was die Welt in Schwung hält? Die unbesungenen Helden hinter den Kulissen sind die Lager. Diese kleinen, aber mächtigen Komponenten spielen eine entscheidende Rolle bei der Verringerung der Reibung...

5 Beste Materialien für Zahnräder im Vergleich

Zahnräder sind die unbesungenen Helden der mechanischen Welt, die im Verborgenen dafür sorgen, dass Maschinen reibungslos laufen. Aber haben Sie sich jemals gefragt, aus welchen Materialien diese kritischen Komponenten...

Top 10 der besten Kühlturmhersteller und -marken im Jahr 2024

Dieser Artikel befasst sich mit den 5 wichtigsten Kühlturmherstellern, die unsere Welt prägen. Erfahren Sie, wie diese Unternehmen mit ihren Innovationen dafür sorgen, dass die Industrie reibungslos und effizient funktioniert. Machen Sie sich bereit, die Geheimnisse zu lüften...
MaschineMFG
Bringen Sie Ihr Unternehmen auf die nächste Stufe
Abonnieren Sie unseren Newsletter
Die neuesten Nachrichten, Artikel und Ressourcen werden wöchentlich an Ihren Posteingang geschickt.

Kontakt

Sie erhalten unsere Antwort innerhalb von 24 Stunden.