5 Aplicaciones innovadoras de la tecnología láser en la producción industrial | MachineMFG

5 Aplicaciones innovadoras de la tecnología láser en la producción industrial

0
(0)

A mediados del siglo XX surgió la tecnología láser. A lo largo de los años, gracias al duro trabajo y la dedicación de generaciones de científicos y técnicos, la tecnología láser ha evolucionado y se ha perfeccionado. Desde sus primeras fases de desarrollo hasta su aplicación práctica en diversos campos, la tecnología láser ha experimentado un crecimiento y un éxito significativos.

En el siglo XXI, la tecnología láser, en particular procesamiento láser aplicada en el ámbito industrial, ha adquirido una gran popularidad y ha tenido un importante impacto económico y social. Ha contribuido decisivamente al avance de las ciencias naturales y la tecnología y a la progresión de la economía social.

Principio del mecanizado por láser

La tecnología de procesamiento láser, como se muestra en la Figura 1, crea un haz láser con alta densidad de energía enfocando la energía de la luz a través de una lente. Esta tecnología utiliza las propiedades únicas de la interacción entre el rayo láser y el material para diversos fines, como el corte, la soldadura, tratamiento superficialpunzonado y micromecanizado de materiales metálicos y no metálicos.

Diagrama esquemático del procesamiento láser

Fig.1 Diagrama esquemático del procesamiento láser

Como tecnología de fabricación de vanguardia, la tecnología de procesamiento láser se utiliza ampliamente en industrias como la automovilística, electrónica, aeronáutica, metalúrgica y de fabricación de maquinaria. Desempeña un papel crucial en la mejora de la calidad de los productos, el aumento de la productividad laboral, el fomento de la automatización y la reducción de la contaminación y el consumo de recursos.

Entre las diversas aplicaciones, el corte por láser, el marcado por láser y el soldadura láser son los más utilizados.

Aplicación de la tecnología láser

Corte por láser

Las técnicas de corte tradicionales, como corte con gasEl corte por plasma, el corte por mecanizado y el corte por plasma tienen sus limitaciones. A pesar de ofrecer velocidades de corte rápidas y la capacidad de cortar materiales más gruesos, la precisión de tamaño de corte suele ser deficiente. Esto se traduce en mayores costes de corte y gastos adicionales de procesamiento.

El mecanizado de corte proporciona una gran precisión, pero su corte lento velocidad limita su capacidad para cortar curvas complejas. Además, se produce una pérdida significativa de material durante el corte.

El corte ciego es más eficaz y rentable, pero su calidad de procesamiento es limitada y su ámbito de aplicación es reducido. La calidad del corte es deficiente, especialmente cuando se procesan chapas gruesas y formas curvas complejas.

En corte por plasma es más eficaz, produce una sección de corte mejor que los otros métodos, pero su precisión de corte está limitada al nivel milimétrico. Por ello, sólo es adecuado para el mecanizado de desbaste y semiacabado.

Corte por láser

Fig.2 Corte por láser

En comparación con la tecnología de corte tradicional, las ventajas de la tecnología de corte por láser (figura 2) son evidentes:

  • Alta velocidad de corte
  • Alta eficacia
  • Amplia gama de mecanizado
  • Al mecanizar, la incisión es suave porque sustituye la herramienta tradicional o la llama por un haz de luz. No es necesario ningún tratamiento posterior.
  • La zona afectada por el calor de corte es pequeña.
  • Pequeña deformación de la chapa
  • Pequeña costura de corte (alto índice de utilización)
  • No hay tensión mecánica en la incisión
  • Sin rebaba de cizalla
  • Alta precisión de mecanizado
  • Buena repetibilidad
  • No dañar la superficie de la placa
  • Programación CNC
  • No es necesario abrir el molde
  • Ahorro económico y de tiempo

En ventajas del corte por láser son especialmente notables cuando se mecanizan curvas. En comparación con el corte por arranque de virutas, la superficie producida por el corte por láser es lisa y no muestra marcas de cuchilla evidentes en las piezas curvas. Además, como la placa permanece inmóvil durante el mecanizado, se elimina el riesgo de arañazos causados por el movimiento.

El corte por láser funciona dirigiendo un rayo enfocado de altaláser de densidad de potencia La pieza se corta soplando el material fundido con un flujo de aire de alta velocidad a lo largo del mismo eje que el haz. A continuación, la pieza se corta soplando el material fundido con un flujo de aire de alta velocidad a lo largo del mismo eje que el haz.

El corte por láser se considera uno de los métodos de corte térmico.

El corte por láser puede dividirse en cuatro categorías:

  1. corte por vaporización láser
  2. corte por fusión láser
  3. corte por oxígeno láser
  4. trazado láser y control de roturas

(1) Corte por vaporización láser

La vaporización por láser es un proceso en el que la pieza se calienta mediante un rayo láser con alta densidad de energía. La temperatura del material aumenta rápidamente y alcanza el punto de ebullición en un breve periodo de tiempo, lo que hace que el material se vaporice y forme vapor. El vapor se expulsa rápidamente, produciendo una incisión en el material. Este método se utiliza principalmente para cortar metales extremadamente finos y materiales no metálicos.materiales metálicos.

(2) Corte por fusión láser

En el corte por fusión láser, el material metálico se funde por calentamiento láser. A continuación, se pulveriza un gas no oxidante, como Ar, He o N2, desde la boquilla a lo largo del mismo eje que el haz. El metal líquido es expulsado por la potente presión del gas, creando una incisión. Este método requiere sólo 1/10 de la energía necesaria para la vaporización, ya que el metal no tiene que vaporizarse completamente. Se utiliza principalmente para cortar metales no oxidables o activos, como el acero inoxidable, titanioaluminio y aleaciones.

(3) Corte por láser de oxígeno

El oxicorte por láser funciona según un principio similar al oxicorte oxiacetilénico. El láser se utiliza como fuente de precalentamiento y el oxígeno u otros gases activos como gas de corte. El gas producido por el chorro reacciona con la oxidación, generando una gran cantidad de calor. El óxido fundido y el material fundido son expulsados de la zona de reacción, lo que produce una incisión en el metal. El oxicorte por láser requiere sólo la mitad de la energía necesaria para el corte por fusión, pero tiene una velocidad de corte mucho mayor. Se utiliza principalmente para cortar acero al carbono, acero al titanio, acero para tratamiento térmico y otros materiales metálicos fácilmente oxidables.

(4) Trazado láser y control de roturas

En el trazado láser, un láser de alta densidad energética escanea la superficie de materiales frágiles, calentando el material en una pequeña ranura. Al aplicar presión, el material frágil se agrieta a lo largo de la ranura. Entre los tres primeros métodos de corte mencionados, el trazado láser y el control de la rotura son los menos utilizados.

Actualmente, el corte por láser es más eficaz para cortar metal negro, con una velocidad de corte rápida y la capacidad de cortar hasta un grosor de 20 mm o más. Sin embargo, debido al efecto de reflexión de la estructura molecular de los metales no ferrosos en el rayo láser, el efecto de corte en estos materiales es ligeramente más débil. La máquina debe estar equipada con un reflector.

Según las estadísticas, el grosor máximo que se puede cortar para aleaciones de aluminio no es más de la mitad que para el metal negro, y el efecto de corte en las aleaciones de cobre, especialmente el cobre, es aún peor.

El núcleo de la tecnología de corte por láser es el generador láser, que se presenta en dos formas: Láser de CO2 y láser de fibra generador.

Generador láser de CO2: El generador láser de CO2 se genera descargando una mezcla de CO2, He y N2 en la cavidad láser a alta presión. Este proceso excita los átomos de la mezcla para liberar energía, que se emite en forma de fotones o electrones para crear el láser. El láser emitido por el láser de CO2 es luz visible, que puede causar ligeros daños en la retina y la piel. Por ello, se aconseja que los operadores lleven gafas protectoras mientras lo utilizan.

Generador láser de fibra: A láser de fibra utiliza una fibra de vidrio dopada con elementos de tierras raras como medio de ganancia. Bajo la acción de la luz de bombeo, se puede formar fácilmente una alta densidad de potencia dentro de la fibra óptica, lo que hace que el nivel de energía láser de la sustancia de trabajo invierta el número de partículas. Se añade un bucle de realimentación positiva para formar la salida del oscilador láser. La salida no es luz visible, lo que puede causar graves daños en la retina y la piel, por lo que el operador debe llevar gafas protectoras especiales durante el funcionamiento.

El láser de CO2 tiene una estructura de trayectoria óptica más compleja y una pérdida de lente óptica mayor, con mayores requisitos medioambientales (menos polvo). La máquina debe aislarse de los focos sísmicos y mantenerse en un entorno seco y a temperatura constante. El sitio láser de fibratiene una estructura de camino óptico simple con menores requisitos medioambientales (alta tolerancia al polvo, las vibraciones, los golpes, la temperatura y la humedad). El sitio láser de fibra es más rápido al cortar placas finas, mientras que el láser de CO2 es más potente al cortar placas gruesas. El láser de CO2 no puede cortar placas metálicas muy reflectantes, pero un láser de fibra puede cortar placas finas de cobre.

Soldadura láser

La soldadura láser (figura 3) es un campo importante de la tecnología láser.

Soldadura láser

Fig.3 Soldadura láser

Soldadura láser es un nuevo tipo de soldadura que utiliza pulsos láser de alta energía para calentar pequeñas zonas del material. La energía del radiación láser se difunde por conducción del calor en el material, provocando su fusión y la formación de un baño de fusión específico. Este método se utiliza principalmente para soldar materiales de paredes finas y piezas de precisión, y puede emplearse para diversas tipos de soldadura como la soldadura por puntos, la soldadura a tope, la soldadura por apilamiento y la soldadura de estanqueidad.

Entre sus principales características figuran:

  • Gran profundidad y anchura
  • Pequeña anchura de soldadura
  • Pequeña zona afectada por el calor
  • Pequeña deformación
  • Rápida velocidad de soldadura
  • El suave y bonito cordón de soldadura
  • No es necesario procesar o simplemente procesar después de soldar
  • Alta costura de soldadura calidad
  • Sin orificio de gas
  • Control preciso
  • Luz de enfoque pequeña
  • Gran precisión de posicionamiento
  • Fácil automatización

Soldadura láser se utiliza ampliamente en diversos campos, en particular en la fabricación de ferrocarriles de alta velocidad y automóviles, debido a sus numerosas ventajas. Estas ventajas incluyen:

(1) Mínima aportación de calor, con un pequeño rango de variación metalográfica en la zona de efecto térmico y mínima deformación causada por la conducción del calor.

(2) La capacidad de confirmar y reducir el tiempo necesario para la gruesa soldadura de chapasincluso eliminando la necesidad de metal de relleno.

(3) No necesita electrodos, sin preocupaciones por contaminación o daños. Además, no pertenece al contacto proceso de soldadura, minimizando la pérdida y la deformación de la fijación.

(4) El rayo láser puede enfocarse, alinearse y guiarse fácilmente mediante instrumentos ópticos, con la posibilidad de colocarlo a una distancia adecuada de la pieza de trabajo y redirigirlo alrededor de obstáculos.

(5) La capacidad de colocar la pieza de trabajo en espacios cerrados controlados por un entorno de vacío o gas interno.

(6) El haz láser puede enfocarse en áreas pequeñas, por lo que es ideal para soldar piezas pequeñas y espaciadas.

(7) Capaz de soldar una amplia gama de materiales y de unir diversos materiales heterogéneos.

(8) Fácil de soldar de forma rápida y automática, o controlada por tecnología digital o informática.

(9) Cuando se suelda material fino o alambre de diámetro fino, no será tan fácil como soldadura por arco.

(10) No se ve afectado por los campos magnéticos y puede alinear con precisión las piezas de soldadura.

(11) Capacidad de soldar dos metales con propiedades diferentes, como resistencias diferentes.

(12) La capacidad de lograr una relación de soldadura en profundidad de 10:1 en la soldadura perforada.

(13) Capacidad para transferir el haz láser a varias estaciones de trabajo.

Debido a estas características soldadura láserLa soldadura láser se utiliza mucho en la fabricación de vehículos civiles.

Soldadura láser es el principal proceso de soldadura en la fabricación de ferrocarriles de alta velocidad y automóviles.

A pesar de sus ventajas, la soldadura láser también tiene varias desventajas que deben tenerse en cuenta. Estas desventajas incluyen:

(1) La necesidad de posicionar con precisión las piezas de soldadura dentro del rango de enfoque del haz láser.

(2) La necesidad de abrazaderas que garanticen que la posición final de la soldadura está alineada con el punto de soldadura sobre el que incidirá el haz láser.

(3) Espesor máximo soldable limitado, siendo la soldadura láser inadecuada para materiales con un espesor de penetración superior a 19 mm.

(4) El impacto de la soldadura láser en las propiedades de los materiales de alta reflectancia y alta conductividad térmica, como el aluminio, el cobre y las aleaciones.

(5) El uso de un controlador de plasma para eliminar el gas ionizado alrededor del baño de fusión cuando se utiliza la soldadura por haz láser de alta energía.

(6) Baja eficiencia de conversión de energía, normalmente inferior a 10%.

(7) La rápida solidificación del cordón de soldadura que pueden provocar porosidad y fragilización.

(8) Coste elevado.

El elevado coste de los equipos de soldadura láser es una limitación importante y restringe su uso generalizado.

Grabado por láser

El grabado por láser consiste en utilizar un rayo láser de alta densidad energética controlado por ordenador para fundir o vaporizar instantáneamente la superficie de un producto, creando el texto o logotipo deseado, como se muestra en la figura 4.

Rotulación láser

Fig.4 Rotulación láser

El grabado por láser también se denomina marcado por láser.

Características del láser marcado:

  • Firme constantemente
  • Bonito diseño
  • Alta velocidad y eficacia
  • Modo sin contacto
  • Alta precisión de repetición
  • No es necesario hacer el formato
  • Sin contaminación
  • Fácil de lograr la impresión de vuelo sincronizado con la línea de producción.

El material que puede marcarse con grabado láser incluye números, letras, caracteres chinos, imágenes gráficas, códigos de barras y mucho más.

El grabado por láser es un método de marcado muy utilizado y avanzado, muy adecuado para la producción moderna a alta velocidad.

Como se muestra en la Tabla 1, la comparación de diversas técnicas de marcado revela que las ventajas de la tecnología de marcado por láser son evidentes.

Tabla 1. Comparación de varias técnicas de marcado

Tecnología de marcadoRendimientoEfecto y precisiónColor de marcadoCambios en los gráficosConsumibles
Marcado láserBienAlta precisión y buen efectoDeterminado por el materialA voluntadNo
Grabado químicoBienBaja precisiónColor del materialNo es fácil
Impresión de tintaPeorAlta precisiónCualquier colorFácil
Grabado mecánicoMejorBaja precisiónColor del materialA voluntad
Prensa mecánicaPeorPoca precisiónColor del materialNo es fácil

Tecnología de prototipado rápido por láser

La creación rápida de prototipos por láser (como se muestra en la Figura 5) representa un cambio significativo en la tecnología de fabricación moderna.

Representa una expansión de la tecnología láser a las aplicaciones industriales.

Tecnología de prototipado rápido por láser

Fig.5 Tecnología de prototipado rápido por láser

La competencia en la industria manufacturera se ha intensificado con la aceleración del proceso de integración del mercado mundial, y la velocidad de desarrollo de los productos se ha convertido en la principal contradicción competitiva. Para satisfacer las necesidades siempre cambiantes de los usuarios, la industria manufacturera requiere una tecnología más flexible, que permita la producción de lotes pequeños o incluso de una sola pieza sin aumentar el coste del producto.

La tecnología de prototipado rápido (RP) es un método de fabricación que construye material capa a capa o, más ampliamente, gráficos 3D diseñados por ordenador. La alta temperatura producida por el láser se utiliza para sinterizar el polvo metálico de los gráficos 3D, dando lugar a componentes metálicos. Los prototipos pueden fabricarse directamente a partir de modelos sólidos 3D CAD en unas pocas horas o en decenas de horas.

La creación rápida de prototipos ofrece una representación más completa e intuitiva que la de los dibujos y las pantallas de ordenador, especialmente durante la fase de desarrollo del producto, lo que permite tener en cuenta de forma exhaustiva diversos factores. De este modo se acortan los ciclos de desarrollo, se mejora la calidad del producto, se reducen los costes y los riesgos de inversión.

Cuando se combina con la fundición de precisión en la fundición, la tecnología de prototipado rápido por láser permite a la fundición producir rápidamente todo tipo de moldes de cera utilizados para la fundición de precisión de estructuras grandes y complejas, reduciendo los costes de subcontratación. Mientras tanto, la producción de lotes individuales o pequeños de piezas de fundición de precisión puede realizarse sin molde, lo que ahorra costes de utillaje y acorta considerablemente el ciclo de producción.

El desarrollo y la producción de nuevos productos ahorran un tiempo valioso y reducen los costes de producción, y se ha mejorado el nivel de precisión de los talleres de fundición, sentando una base sólida para el éxito de la precisión. producción de fundición en futuros productos.

Está claro que el uso de la tecnología de prototipado rápido por láser se generalizará en el futuro.

Tratamiento térmico con láser

El tratamiento térmico por láser (como se muestra en la figura 6) es una tecnología que consiste en utilizar un láser para calentar la superficie de materiales metálicos con el fin de realizar un tratamiento térmico superficial.

Tratamiento térmico con láser

Fig.6 Tratamiento térmico con láser

Este proceso puede utilizarse para una serie de superficie metálica tratamientos de modificación que incluyen el endurecimiento (también conocido como temple superficial, amorfización superficial, refundición y temple superficial), la aleación superficial y otras modificaciones.

El resultado del tratamiento láser provoca cambios en la composición, estructura y rendimiento de la superficie que no son posibles con el temple superficial convencional. Tras el tratamiento láser, la superficie dureza de la fundición puede alcanzar los 60HRC, mientras que el acero al carbono con niveles de carbono de medios a altos puede llegar hasta los 70HRC.

Esta mejora de la dureza superficial conlleva un aumento de la resistencia al desgaste, a la fatiga, a la corrosión y a la oxidación, y prolonga la vida útil general del metal.

Conclusión

Debido a sus numerosas ventajas, la tecnología de procesamiento láser es muy valorada en el sector de la fabricación industrial, con bajos costes, alta eficiencia y un vasto potencial de aplicación. Esto ha provocado una intensa competencia entre las principales naciones industriales del mundo.

La tecnología láser se está expandiendo a nuevos campos, y su desarrollo avanza a un ritmo asombroso. En las principales industrias manufactureras, como la automovilística, la electrónica, la maquinaria, la aeronáutica y la siderúrgica, algunos países han pasado totalmente de los métodos de procesamiento tradicionales al procesamiento por láser, y han entrado en la "era de la luz".

¿De cuánta utilidad te ha parecido este contenido?

¡Haz clic en una estrella para puntuarlo!

Promedio de puntuación 0 / 5. Recuento de votos: 0

Hasta ahora, ¡no hay votos!. Sé el primero en puntuar este contenido.

Ya que has encontrado útil este contenido...

¡Sígueme en los medios sociales!

¡Siento que este contenido no te haya sido útil!

¡Déjame mejorar este contenido!

Dime, ¿cómo puedo mejorar este contenido?

2 comentarios en “5 Innovative Applications of Laser Technology in Industrial Production”

  1. ¡¡¡Hey blog muy cool !!! Man .. Beautiful .. Amazing .. Voy a marcar su sitio web y tomar los feeds también ... Estoy feliz de encontrar una gran cantidad de información útil aquí en el post, tenemos que trabajar más estrategias en este sentido, gracias por compartir. . . . . .

Deja un comentario

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

Scroll al inicio