Точная гибка листового металла с помощью Solidworks Допуск на изгиб

Вы когда-нибудь задумывались, почему ваши проекты из листового металла не всегда идеально подходят друг к другу? Ключ к разгадке кроется в понимании припусков на изгиб. Эта концепция обеспечивает точную гибку и сокращает отходы материала. В этой статье вы узнаете, как освоить припуск на изгиб в SOLIDWORKS, чтобы сделать ваши проекты точными и эффективными. Приготовьтесь изменить свой процесс изготовления листового металла!

Припуски на изгиб деталей из листового металла

Оглавление

Понимание пособия на изгиб

Понятие о припуске на изгиб

Припуск на изгиб - это критический параметр при изготовлении листового металла, который помогает определить точную длину плоского листа, необходимую для получения требуемого размера после изгиба. Он относится к длине дуги изгиба, измеренной вдоль нейтральной оси материала. Нейтральная ось - это воображаемая линия в области изгиба, где материал не расширяется и не сжимается в процессе гибки.

Расчет припусков на изгиб зависит от различных факторов, таких как толщина металлического листа, радиус изгиба и угол изгиба. В SOLIDWORKS пользователи могут определять значения припусков на изгиб, чтобы получить точный контроль над разработкой деталей из листового металла.

Значение припуска на изгиб

Учет припусков на изгиб необходим для изготовления точно согнутых деталей из листового металла. Он обеспечивает соответствие разработанного размера детали проектному замыслу и гарантирует, что изгибы будут выполнены под правильными углами. Это значительно сокращает количество ошибок, отходов материала и переделок в процессе изготовления.

Понимание и применение значений припусков на изгиб позволяет конструкторам и изготовителям прогнозировать поведение материала при изгибе и избегать таких распространенных проблем с листовым металлом, как перегиб или недогиб. Правильное использование припусков на изгиб в SOLIDWORKS повышает эффективность моделирования и проектирования сложных деталей из листового металла.

Факторы, влияющие на величину пособия на изгиб

Свойства материала

Сайт свойства материала играют важную роль при определении припуска на изгиб в SolidWorks. Различные материалы обладают разной степенью гибкости и упругости, что влияет на величину припуска на изгиб. Например, такие металлы, как алюминий, сталь и нержавеющая сталь, обладают различными упругими свойствами, что приводит к различным значениям припусков на изгиб для каждого материала.

Угол изгиба

Угол изгиба - еще один важнейший фактор, влияющий на припуск на изгиб. С увеличением угла обычно увеличивается и припуск на изгиб. При большем угле изгиба в процессе гибки деформируется больше материала, поэтому требуется больший припуск на изгиб. В SolidWorks угол изгиба можно отрегулировать, чтобы получить нужное значение припуска на изгиб для данной конструкции.

Толщина материала

Толщина материала напрямую связана с припуском на изгиб, так как более толстые материалы требуют большей деформации и, следовательно, большего припуска. Правильная оценка толщины материала необходима в SolidWorks для точных расчетов и эффективной работы. конструкция из листового металла. Более толстые материалы также требуют больших усилий для операций гибки, что приводит к повышению требований к оборудованию и оснастке.

Различие между надбавкой за изгиб и вычетом за изгиб

Определение вычета за изгиб

Bend Deduction, или BD, - это терминология, используемая в производство листового металла. Она представляет собой разницу между припуском на изгиб и удвоенным внешним отступом в материале. Эта величина является ключевым фактором при определении общей плоской длины деталей из листового металла в процессе гибки. Она помогает изготовителям создавать точные детали из листового металла, которые соответствуют требуемым размерам.

Налог на изгиб и вычет на изгиб

При работе в SOLIDWORKS конструкторы могут выбирать между значениями припусков на изгиб и вычетов на изгиб в своих конструкциях из листового металла. Оба варианта полезны для определения окончательной плоской формы детали из листового металла и необходимы для точного изготовления.

Припуск на изгиб это длина дуги изгиба, измеренная вдоль нейтральной оси материала. Она представляет собой длину металлического листа, растягиваемого или сжимаемого в процессе гибки. Нейтральная ось относится к области в материале, где нет напряжения или деформации.

ПараметрОписание
Допуск на изгибДлина дуги изгиба вдоль нейтральной оси материала
Вычет за изгибРазница между припуском на изгиб и удвоенным внешним отступом
BDАббревиатура вычета за изгиб

При использовании SOLIDWORKS важно ввести правильное значение припуска на изгиб или вычета на изгиб, в зависимости от выбранного метода. Это гарантирует, что конечная деталь из листового металла будет иметь нужные размеры и правильно вписываться в сборки.

Оба метода имеют свои преимущества и особенности. Расчеты припусков на изгиб дают более точное представление о процессе гибки и учитывают поведение материала при изгибе. Вычет на изгиб упрощает процесс расчета и более понятен для новичков. конструкция из листового металла.

В заключение следует отметить, что понимание различий между припусками на изгиб и вычетами на изгиб имеет решающее значение для точного проектирования листового металла в SOLIDWORKS. Точный ввод этих значений гарантирует, что конечный компонент из листового металла будет соответствовать проектным спецификациям и органично впишется в требуемую сборку.

Метод расчета припуска на изгиб

Вы можете напрямую использовать наш Калькулятор припусков на изгиб для расчета припуска на изгиб. Кроме того, калькулятор изготовления также поможет вам рассчитать коэффициент K, коэффициент Y, припуск на изгиб, вычет за изгиб, и т.д.

Вам может быть интересно, что такое припуск на изгиб, если вы никогда не работали с листовой металл до.

Когда лист сгибается в листогибочный прессПри этом часть листа, находящаяся рядом с пуансоном и соприкасающаяся с ним, удлиняется, компенсируя данный изгиб.

Если вы сравните длину этой части до и после сгибания, то увидите, что они разные.

Как инженер, если вы не компенсируете это отклонение, конечный продукт не будет иметь точных размеров.

Это особенно важно для деталей, где требуется соблюсти более жесткий припуск или точность.

В этой статье я расскажу о некоторых основных проблемах и принципах, с которыми вам придется регулярно сталкиваться при работе с листовым металлом.

Прежде чем мы начнем, я хочу кое-что прокомментировать: на самом деле не существует научного метода или формулы для определения точного расчета припуска на изгиб, потому что в процессе производства детали из листового металла действует множество факторов.

Например, фактическая толщина материала, бесконечное множество условий работы инструмента, методы формованияи так далее.

Здесь много переменных, и в реальности для расчета припуска на изгиб используется множество методов.

Метод проб и ошибок является, пожалуй, самым популярным, в то время как таблицы изгибов - еще одна часто используемая техника.

Таблицы изгибов обычно можно найти у поставщиков металла, производителей и в учебниках по машиностроению. Некоторые компании разрабатывают собственные таблицы изгибов на основе своих стандартных формул.

Теперь вернемся к Solidworks. Как именно Solidworks рассчитывает припуск на изгиб? Solidworks использует два метода: припуск на изгиб и вычет на изгиб.

Допуск на изгиб

Я расскажу, что это за методы, и покажу, как они используются в Solidworks.

Чертеж припуска на изгиб

Метод припуска на изгиб основан на формуле, которая показана на моей диаграмме.

  • Lf = L1 + L2 + BA
  • BA = Допуск на изгиб

Общая длина сплющенного листа равна сумме L1 (первая длина), L2 и припуска на изгиб.

Область припуска на изгиб показана на моей диаграмме зеленым цветом. Именно в этой области происходит вся деформация в процессе изгиба.

Как правило, припуск на изгиб будет различным для каждого сочетания типа материала, толщины материала, радиус изгибаугол изгиба, а также различные процессы обработки, типы, скорости и т.д. Список возможных переменных обширен.

Значения припусков на изгиб, которые дают поставщики листового металла, производители и учебники по машиностроению, представлены в таблицах изгибов. Таблица изгибов выглядит как следующая электронная таблица Excel.

Таблица допусков на изгиб

Метод таблицы изгибов, вероятно, является наиболее точным методом расчета припусков на изгиб.

Вы можете вручную ввести данные в матрицу угла изгиба и радиус изгиба. Если вы не уверены в величине припуска на изгиб, можно провести несколько тестов.

Вам понадобится кусок точно такого же листового металла, который вы будете использовать для изготовления детали, а затем вы согнете его с помощью тех же процессов, которые вы будете использовать во время обработки. Просто сделайте несколько измерений до и после гибки, и на основе этой информации вы сможете отрегулировать необходимый припуск на изгиб.

Вычет за изгиб

Еще один метод, который использует Solidworks, - это метод вычитания изгиба.

Формула выглядит следующим образом:

  • Lf = D1 + D2 - BD
  • BD = Вычитание изгиба

Длина деталей в расправленном виде, Lf, равна D1 плюс D2 минус вычет на изгиб.

Как и припуски на изгиб, вычеты на изгиб берутся из тех же источников: таблиц и ручного тестирования.

Как видите, легко понять, как эти величины связаны друг с другом, основываясь на информации, представленной в этих формулах.

  • L1 + L2 + BA = D1 + D2 - BD

Коэффициент K

Другой метод расчета припусков на изгиб использует коэффициент K.

K представляет собой смещение нейтральной оси.

Общий принцип этой формулы таков: нейтральная ось (показана красным на моей диаграмме) не меняется в течение процесс гибки. В процессе гибки материал внутри нейтральной оси будет сжиматься, а материал вне нейтральной оси - растягиваться. Нейтральная ось будет находиться ближе к внутреннему изгибу (обозначен синим цветом на диаграмме). Чем сильнее изгибается деталь, тем ближе нейтральная ось будет находиться к внутренней части детали.

Формула расчета припуска на изгиб с учетом коэффициента K приведена ниже:

BA = 2πA(R+KT)/360

  • π=3.14
  • A= Угол (градусы)
  • R= Радиус изгиба
  • K=Смещение нейтральной оси (K-фактор) t/T
  • T=Толщина материала
  • BA=Допуск на длину изгиба

Коэффициент K равен t - расстоянию смещения до нейтральной оси, деленному на большую T - толщину материала.

В этой формуле припуск на изгиб равен 2 умножить на пи, умножить на A (угол), умножить на сумму R (радиус изгиба) и коэффициента K, умножить на T (толщину материала). Затем разделите все это на 360.

Теоретически коэффициент K может быть в любом диапазоне от 0 до 1, но для практических целей он обычно составляет от 0,25 до 0,5.

  • K-фактор = 0 - 1 (теоретически)
  • K-фактор = 0,25 - 0,5 (практично)

Например, твердые материалы, такие как сталь, имеют более высокий коэффициент K, например 0,5, в то время как мягкие материалы, такие как медь или латунь, имеют более низкий коэффициент K, близкий к 0.

И не волнуйтесь, это последняя формула, которую мы рассмотрим в этом уроке. Сейчас она может показаться немного запутанной, но с некоторой практикой она станет второй натурой.

Пример K-Factor

И последнее: давайте посмотрим на пример. На этой части есть подол, который имеет коэффициент K около 0,3. С другой стороны, мягкий изгиб, такой как постепенный изгиб на другой стороне этой детали, имеет более высокий коэффициент K - около 0,5. На этом мы завершаем наш урок по припускам на изгиб.

Дальнейшее чтение:

Не забывайте, что делиться - значит заботиться! : )
Шейн
Автор

Шейн

Основатель MachineMFG

Как основатель MachineMFG, я посвятил более десяти лет своей карьеры металлообрабатывающей промышленности. Мой обширный опыт позволил мне стать экспертом в области производства листового металла, механической обработки, машиностроения и станков для обработки металлов. Я постоянно думаю, читаю и пишу об этих предметах, постоянно стремясь оставаться на переднем крае своей области. Позвольте моим знаниям и опыту стать преимуществом для вашего бизнеса.

Вам также может понравиться
Мы выбрали их специально для вас. Читайте дальше и узнавайте больше!
Решения для гибки листового металла

28 Задачи и решения по гибке листового металла

Приходилось ли вам сталкиваться с проблемами гибки листового металла, которые заставляли вас ломать голову? В этой содержательной статье блога опытный инженер-механик делится своим опытом решения распространенных...
Калькулятор коэффициента K

Калькулятор коэффициента K для гибки листового металла (онлайн и бесплатно)

Вы испытываете трудности с проектированием точных деталей из листового металла? Раскройте секреты коэффициента K, важнейшего понятия в производстве листового металла. В этой статье наш эксперт, инженер-механик, объясняет...
Как рассчитать разворот листового металла

Формула длины разработки листового металла (размер заготовки)

Вы когда-нибудь сталкивались с проблемой точного раскладывания деталей из листового металла? В этой статье рассматриваются искусство и наука, лежащие в основе расчетов раскладывания листового металла. Откройте для себя ключевые понятия, формулы и методы, используемые...

Принципы структурного проектирования деталей для гибки листового металла

Вы когда-нибудь задумывались, почему детали из листового металла трескаются или деформируются при гибке? В этой статье рассматриваются основные принципы проектирования листового металла, особое внимание уделяется методам гибки для обеспечения точности...

Техники и пределы для типичных компонентов из листового металла

Как с помощью точных методов и тщательного соблюдения ограничений можно превратить листовой металл в необходимые компоненты? В этой статье вы узнаете о таких методах, как сплющивание, гибка U-образной детали на 180°, тройная фальцовка...
Оптимизация последовательности процессов при гибке листового металла: Ключевые факторы, которые необходимо учитывать

Оптимизация последовательности процессов при гибке листового металла: Ключевые факторы, которые необходимо учитывать

Вы когда-нибудь пытались добиться идеальных изгибов листового металла? Эта статья посвящена основным советам и рекомендациям по освоению гибки листового металла, охватывая все, начиная от последовательности процесса и заканчивая анализом изгибаемости.....

Искусство гибки листового металла: Формы и техника

Как добиться точных изгибов листового металла? Понимание форм и технологий, лежащих в основе этого процесса, имеет решающее значение. В этой статье рассматриваются различные методы гибки, от свободной гибки до...
MachineMFG
Поднимите свой бизнес на новый уровень
Подпишитесь на нашу рассылку
Последние новости, статьи и ресурсы, еженедельно отправляемые в ваш почтовый ящик.

Свяжитесь с нами

Вы получите наш ответ в течение 24 часов.