Pro-Level Servo Driver Setup Guide for Optimal Performance

Servo motors are widely used in automated equipment, especially for position control. Most servo motors from various brands have this capability.

The controller sends pulses to control the servo motor’s operation, with the number of pulses determining the rotation angle and the pulse frequency determining the speed (which is related to the electronic gear setting).

When a new system’s parameters don’t work, start by setting the position gain to ensure that the motor operates as smoothly as possible without noise. The moment of inertia ratio is also critical. It can be referenced by the number set through self-learning, then set the speed gain and speed integration time to ensure low-speed, continuous operation and controlled position accuracy.

How To Set Up The Servo Driver

(1) Position proportional gain

Set the proportional gain of the position control regulator. The higher the gain, the greater the stiffness, and the smaller the position lag under the same frequency command pulse. However, setting it too high may cause oscillation or overshoot. The parameter value is determined by the specific servo system model and load.

(2) Position feedforward gain

Set the feedforward gain of the position control. When the set value is larger, the position lag under any frequency command pulse is smaller, the feedforward gain of the position loop is higher, and the high-speed response characteristics of the control system are improved. However, this may cause instability and oscillation in the system. When high response characteristics are not necessary, this parameter is usually set to 0, with a range of 0-100%.

(3) Speed proportional gain

Set the proportional gain of the speed regulator. The value of the gain increases with a higher setting, making the system stiffer. The value of the parameter should be determined based on the specific servo drive system model and load. Generally, the greater the load inertia, the higher the set value. Attempt to set a larger value while ensuring that the system does not produce oscillation.

(4) Velocity integral time constant

Set the integral time constant of the speed regulator. The smaller the setting value, the faster the integration speed. The parameter value is determined based on the specific model and load of the servo drive system. In general, the greater the load inertia, the larger the set value. Under the condition that the system does not generate oscillation, aim to set a smaller value.

(5) Velocity feedback filter factor

Set the speed feedback low-pass filter characteristics.

The higher the value, the lower the cut-off frequency and the lower the noise generated by the motor.

If the load inertia is large, the set value can be increased appropriately.

If the value is too high, the response will be slow, which may cause oscillation.

The lower the cutoff value, the faster the response.

If higher speed response is required, the set value can be reduced appropriately.

(6) Maximum output torque setting

Set the internal torque limit value of the servo driver.

The setting value is expressed as a percentage of the rated torque.

This limit is always in effect and sets the range of positioning completion pulses in position control mode.

This parameter provides a basis for the driver to determine if positioning is complete under position control mode.

When the number of remaining pulses in the position deviation counter is less than or equal to this parameter’s set value, the driver considers the positioning to be complete, and the in-place switch signal is on. Otherwise, it is off.

In position control mode, the positioning completion signal is output, and the set value of the acceleration and deceleration time constant determines the acceleration time of the motor from 0 to 2000 RPM or the deceleration time from 2000 to 0 RPM.

The acceleration and deceleration characteristics are linear, and the arrival speed range is set. In non-position control mode, if the servo motor’s speed exceeds the set value, the speed arrival switch signal is on, otherwise it is off.

This parameter is not used in position control mode and is independent of the direction of rotation.

Set Up The Servo Driver

(7) Manually adjust the gain parameters

Adjust the Speed Proportional Gain KVP Value

After the servo system is installed, the parameters must be adjusted to ensure stable rotation. Start by adjusting the speed proportional gain KVP value. Before making any adjustments, set the integral gain KVI and differential gain KVD to zero, then gradually increase the KVP value. Observe if there is any oscillation when the servo motor stops and manually adjust the KVP parameters to see if the rotation speed is noticeably fast or slow. If the KVP value causes the above-mentioned issues, reduce the KVP value to eliminate oscillation and stabilize the rotation speed. This value will be the preliminary determined parameter value. Repeat the correction process as needed to achieve the ideal value.

Adjust the Integral Gain KVI Value

Gradually increase the KVI value of the integral gain to produce the integral effect. As mentioned in the introduction to integral control, the KVP value and integral effect can cause oscillation and instability when they reach critical values. Similarly, reduce the KVI value to eliminate oscillation and stabilize the rotation speed. This value will be the preliminary determined parameter value.

Adjust the Differential Gain KVD Value

The main purpose of differential gain is to smooth the speed rotation and reduce overshoot. Gradually increasing the KVD value will improve speed stability.

Adjust the Position Proportional Gain KPP Value

If the KPP value is adjusted too much, the motor positioning will overshoot, causing instability. In this case, reduce the KPP value to reduce the overshoot and avoid instability, but be careful not to adjust it too small, as it will reduce positioning efficiency.

(8) Automatically adjust gain parameters

Modern servo drivers are computerized and most of them offer an automatic gain adjustment feature, which can handle most load conditions. During parameter adjustment, you can first use the automatic parameter adjustment function and then make manual adjustments if necessary. The automatic gain adjustment also has various options. Typically, the control response is divided into different levels, such as high, medium, and low response, and users can set it according to their requirements.

Don't forget, sharing is caring! : )


Founder of MachineMFG

As the founder of MachineMFG, I have dedicated over a decade of my career to the metalworking industry. My extensive experience has allowed me to become an expert in the fields of sheet metal fabrication, machining, mechanical engineering, and machine tools for metals. I am constantly thinking, reading, and writing about these subjects, constantly striving to stay at the forefront of my field. Let my knowledge and expertise be an asset to your business.

Up Next

Mastering CAD/CAM: Essential Technologies Explained

Basic Concepts of Computer-Aided Design and Computer-Aided Manufacturing Computer-aided design and computer-aided manufacturing (CAD/CAM) is a comprehensive and technically complex system engineering discipline that incorporates diverse fields such as computer [...]

Virtual Manufacturing Explained: Concepts & Principles

Concept of Virtual Manufacturing Virtual Manufacturing (VM) is the fundamental realization of the actual manufacturing process on a computer. It utilizes computer simulation and virtual reality technologies, supported by high-performance [...]

Understanding Flexible Manufacturing Systems: A Guide

A Flexible Manufacturing System (FMS) typically employs principles of systems engineering and group technology. It connects Computer Numerical Control (CNC) machine tools (processing centers), coordinate measuring machines, material transport systems, [...]

Exploring 4 Cutting-Edge Nanofabrication Techniques

Just as manufacturing technology plays a crucial role in various fields today, nanofabrication technology holds a key position in the realms of nanotechnology. Nanofabrication technology encompasses numerous methods including mechanical [...]

Ultra-Precision Machining: Types and Techniques

Ultra-precision machining refers to precision manufacturing processes that achieve extremely high levels of accuracy and surface quality. Its definition is relative, changing with technological advancements. Currently, this technique can achieve [...]

Exploring High-Speed Cutting: Tech Overview & Application

Cutting machining remains the most prominent method of mechanical processing, holding a significant role in mechanical manufacturing. With the advancement of manufacturing technology, cutting machining technology underwent substantial progress towards [...]

Top 7 New Engineering Materials: What You Need to Know

Advanced materials refer to those recently researched or under development that possess exceptional performance and special functionalities. These materials are of paramount significance to the advancement of science and technology, [...]

Metal Expansion Methods: A Comprehensive Guide

Bulge forming is suitable for various types of blanks, such as deep-drawn cups, cut tubes, and rolled conical weldments. Classification by bulge forming medium Bulge forming methods can be categorized [...]
Take your business to the next level
Subscribe to our newsletter
The latest news, articles, and resources, sent to your inbox weekly.
© 2024. All rights reserved.

Contact Us

You will get our reply within 24 hours.