Tungsten Steel vs Hard Alloy: Unveiling the Distinct Differences

Tungsten Steel vs Hard Alloy Unveiling the Distinct Differences

For a long time, many industry professionals have considered hard alloys to be synonymous with tungsten steel. Today, let’s discuss the differences between hard alloys and tungsten steel.

I. Hard Alloy

A hard alloy is an extremely hard alloy material created through a powder metallurgy process from refractory metal hard compounds and binding metals.

Tungsten Steel vs Hard Alloy Unveiling the Distinct Differences

Tungsten carbide (WC) is the main component of hard alloy, accounting for 70%-97% of the total composition. The binding metal, typically comprising 3%-30%, serves as a binder in the alloy.

During the sintering process, it envelops the tungsten carbide powder and tightly binds it together; upon cooling, it forms a hard alloy.

Accordingly, commonly used hard alloys are classified into three categories based on their composition and performance characteristics: tungsten cobalt, tungsten titanium cobalt, and tungsten titanium tantalum (niobium) types.

The most widely used in production are tungsten cobalt and tungsten titanium cobalt hard alloys.

1. Tungsten Cobalt Hard Alloy

The main components are tungsten carbide (WC) and cobalt. The grade is represented by the code YG, followed by the percentage of cobalt. For example, YG6 represents a tungsten cobalt hard alloy with 6% cobalt content and 94% tungsten carbide.

2. Tungsten Titanium Cobalt Hard Alloy

The main components are tungsten carbide (WC), titanium carbide (TiC), and cobalt. The grade is represented by the code YT, followed by the percentage of titanium carbide. For example, YT15 represents a tungsten titanium cobalt hard alloy with 15% titanium carbide content.

3. Tungsten Titanium Tantalum (Niobium) Hard Alloy

This type of hard alloy, also known as a universal hard alloy or versatile hard alloy, is primarily composed of tungsten carbide (WC), titanium carbide (TiC), tantalum carbide (TaC) or niobium carbide (NbC), and cobalt. The grade is represented by the code YW followed by a sequence number.

Table 1: Common hard alloy grades and chemical compositions

GradeChemical composition%

Note: The “X” following the grade indicates a fine-grain alloy, “C” indicates a coarse-grain alloy, and no letter indicates a general grain alloy.

II. The Difference between Tungsten Steel and Hard Alloy

Generally, tungsten steel is produced by adding tungsten material to molten steel in the steel refining process, also known as high-speed steel or tool steel, with a typical tungsten content of 15-25%.

In addition to producing high-speed steel by melting, there are also powder metallurgy high-speed steels, which avoid the carbide segregation caused by the melting method that leads to reduced mechanical properties and heat treatment distortion.

Hard alloy, on the other hand, is made using a powder metallurgy process with tungsten carbide as the main body and cobalt or other binding metals for sintering, and its tungsten content is generally above 80%.

Simply put, any alloy with a hardness exceeding HRC65 can be called a hard alloy. Thus, tungsten steel is a type of hard alloy. However, strictly speaking, a hard alloy is not necessarily tungsten steel.

Don't forget, sharing is caring! : )


Founder of MachineMFG

As the founder of MachineMFG, I have dedicated over a decade of my career to the metalworking industry. My extensive experience has allowed me to become an expert in the fields of sheet metal fabrication, machining, mechanical engineering, and machine tools for metals. I am constantly thinking, reading, and writing about these subjects, constantly striving to stay at the forefront of my field. Let my knowledge and expertise be an asset to your business.

Up Next

Mastering CAD/CAM: Essential Technologies Explained

Basic Concepts of Computer-Aided Design and Computer-Aided Manufacturing Computer-aided design and computer-aided manufacturing (CAD/CAM) is a comprehensive and technically complex system engineering discipline that incorporates diverse fields such as computer [...]

Virtual Manufacturing Explained: Concepts & Principles

Concept of Virtual Manufacturing Virtual Manufacturing (VM) is the fundamental realization of the actual manufacturing process on a computer. It utilizes computer simulation and virtual reality technologies, supported by high-performance [...]

Understanding Flexible Manufacturing Systems: A Guide

A Flexible Manufacturing System (FMS) typically employs principles of systems engineering and group technology. It connects Computer Numerical Control (CNC) machine tools (processing centers), coordinate measuring machines, material transport systems, [...]

Exploring 4 Cutting-Edge Nanofabrication Techniques

Just as manufacturing technology plays a crucial role in various fields today, nanofabrication technology holds a key position in the realms of nanotechnology. Nanofabrication technology encompasses numerous methods including mechanical [...]

Ultra-Precision Machining: Types and Techniques

Ultra-precision machining refers to precision manufacturing processes that achieve extremely high levels of accuracy and surface quality. Its definition is relative, changing with technological advancements. Currently, this technique can achieve [...]

Exploring High-Speed Cutting: Tech Overview & Application

Cutting machining remains the most prominent method of mechanical processing, holding a significant role in mechanical manufacturing. With the advancement of manufacturing technology, cutting machining technology underwent substantial progress towards [...]

Top 7 New Engineering Materials: What You Need to Know

Advanced materials refer to those recently researched or under development that possess exceptional performance and special functionalities. These materials are of paramount significance to the advancement of science and technology, [...]

Metal Expansion Methods: A Comprehensive Guide

Bulge forming is suitable for various types of blanks, such as deep-drawn cups, cut tubes, and rolled conical weldments. Classification by bulge forming medium Bulge forming methods can be categorized [...]
Take your business to the next level
Subscribe to our newsletter
The latest news, articles, and resources, sent to your inbox weekly.
© 2024. All rights reserved.

Contact Us

You will get our reply within 24 hours.