Metal Mechanical Properties Chart: Shear Strength, Tensile Strength, Yield Strength

Metal Mechanical Properties Chart Shear Strength, Tensile Strength, Yield Strength

To cater to the requirements of our readers, we have developed a table of mechanical properties for a range of ferrous and non-ferrous metals.

Related reading: Ferrous vs Non-ferrous Metals

Metal Mechanical Properties Chart Shear Strength, Tensile Strength, Yield Strength

Mechanical Properties Chart of Ferrous Metals

(1) Metal Shear Strength, Tensile Strength, Elongation, Yield Strength & Elastic Modulus Chart

MaterialGradeMaterial
Status
Shear
Strength
τ
(MPa)
Tensile
Strength
σb
(MPa)
Elongation
σs
(%)
Yield
Strength
δ
(MPa)
Elastic
Modulus
Е
(MPa)
Industrial pure iron for electricians C>0.025DT1
DT2
DT3
annealed18023026 — 
Electrical Silicon SteelD11
D12
D21
D31
D32
D370
D310~340
S41~48
annealed19023026 — 
Ordinary carbon steelQ195unannealed260~320315~39028~33195 
Q215270~340335~41026~31215
Q235310~380375~46021~26235
Q255340~420410~51019~24255
Q275400~500490~61015~20275
Carbon tool steel08Fannealed220~310280~39032180 
10F260~360330~45032200190000
15F220~340280~42030190 
08260~340300~44029210198000
10250~370320~46028 
15270~380340~48026280202000
20 —280~400360~5103525021000
25320~440400~55034280202000
30360~480450~60022300201000
35400~520500~65020320201000
40420~540520~67018340213500
45440~560550~70016360204000
50normalized440~580550~73014380220000
55550≥67043390
60550≥70012410208000
65600≥73010420
70600≥7609430210000
T7~T12
T7A~T12A
annealed60075010
T8Acold hardened600~950750~1200
High-quality carbon steel10Mnannealed320~460400~58022230211000
65Mn6007501240021000
Alloy structural steel25CrMnSiA
25CrMnSi
low-temperature annealed400~560500~70018950
30CrMnSiA
30CrMnSi
440~600550~750161450
850
Quality spring steel60Si2Mn
60Si2MnA
65SiWA
low-temperature annealed720900101200200000
cold hardened640~960800~1200101400
1600
Stainless steel1Cr13annealed320~380400~47021420210000
2Cr13320~400400~50020450210000
3Cr13400~480500~60018480210000
4Cr13400~480500~60015500210000
1Cr18Ni19
2Cr18Ni19
heat-treated460~520580~64035200200000
rolled, cold-hardened800~8801000~110038220200000
1Cr18Ni9TiHeat-treated softened430~550540~70040200200000

(2) Steel Shear Strength of Steel When Heated

Steel GradeHeating temperature ℃
200500600700800900
Q195, Q215, 08, 153603202001106030
Q235, Q255, 20, 254504502401309060
Q275, 30, 355305203301609070
40, 45, 506005803801909070

Note: When determining the shear strength of a material, it is important to take into account the stamping temperature, which is typically 150~200℃ lower than the heating temperature.

Mechanical Properties Chart of Non-ferrous Metals

MaterialGradeMaterial StatusShear Strength τ
(MPa)
Tensile Strength σb
(MPa)
Elongation σs
(%)
Yield
Strength δ
(MPa)
Elastic
Modulus Е
(MPa)
Aluminum1070A
1050A 
1200
Annealed8075~1102550~8072000
Cold hardened100120~1504120~240
Aluminum manganese alloys3A21Annealed70~100110~145195071000
Semi-cold hardened100~140155~20013130
Aluminum-magnesium alloy
Aluminum-magnesium-copper alloy
SA02Annealed130~160180~23010070000
Semi-cold hardened160~200230~280210
High strength aluminum-magnesium-copper alloy7A04Annealed170250
Hardened and artificially aged35050046070000
Magnesium-manganese alloyMB1
MB8
Annealed120~140170~1903~59843600
Annealed170~190220~23012~2414040000
Cold hardened190~200240~2508~10160
Rigid aluminum2Al12Annealed105~150150~21512
Hardened with natural aging280~310400~4401536872000
Cold hardened after hardening280~320400~46010340
Pure copperT1
T2
T3
Soft1602003070108000
Hard2403003380130000
BrassH62Soft26030035380100000
Semi-hard30038020200
Hard42042010480
BrassH68Soft24030040100110000
Semi-hard28035025
Hard40040015250115000
Lead brassHPb59-1Soft3003502514293000
Hard4004505420105000
Manganese brassHMn58-2Soft34039025170100000
Semi-hard40045015
Hard5206005
Tin-phosphorus bronze
Tin-Zinc-Bronze
QSn4-4-2.5
QSn4-3
Soft26030038140100000
Hard4805503~5 
Extra-hard5006501~2546124000
Aluminum bronzeQAl17Annealed52060010186
Un-annealed5606505250115000~130000
Aluminum manganese bronzeQAl9-2Soft3604501830092000
Hard4806005500
Silicon-manganese bronzeQBi3-1Soft280~300350~38040~45239120000
Hard480~520600~6503~5540
Extra-hard560~600700~7501~2
Beryllium bronzeQBe2Soft240~480300~60030250~350117000
Hard52066021280132000~141000
Cupro-nickelB19Soft24030025
Hard3604503
Nickel silverBZn15-20Soft28035035207
Hard4005501486126000~140000
Extra-hard520650 
NickelNi-3~Ni-5Soft3504003570
Hard4705502210210000~230000
German silverBZn15-20Soft30035035
Hard4805501
Extra-hard5606501
ZincZn-3~Zn-6120~200140~230407580000~130000
LeadPb-3~Pb-620~3025~4040~505~1015000~17000
TinSn1~Sn430~4040~501241500~55000
Titanium alloyTA2Annealed360~480450~60025~30
TA3440~600550~75020~25
TA5640~680800~85015800~900104000
Magnesium alloyMB1Cold state120~140170~1903~512040000
MB8150~180230~24014~1522041000
MB1Preheat 300°C30~5030~5050~5240000
MB850~7050~7058~6241000
Silver180503081000
Fungible alloyNi29Co18400~500500~600
Copper constantanBMn40-1.5Soft400~600
Hard650
TungstenAnnealed7200700312000
Un-annealed14911~4800380000
MolybdenumAnnealed20~30140020~25385280000
Un-annealed32~3416002~5595300000

3. Shear Strength for Various Metals

(1) Shear Strength for Ferrous Metals

Here is the shear strength information for various metals:

  1. Industrial Pure Iron for Electricians (DT1, DT2, DT3): Shear Strength – 180 MPa (annealed)
  2. Electrical Silicon Steel (D11, D12, D21, D31, D32, D370, D310, S41~48): Shear Strength – 190 MPa (annealed)
  3. Ordinary Carbon Steel (Q195): Shear Strength – 260~320 MPa (unannealed)
  4. Ordinary Carbon Steel (Q215): Shear Strength – 270~340 MPa
  5. Ordinary Carbon Steel (Q235): Shear Strength – 310~380 MPa
  6. Ordinary Carbon Steel (Q255): Shear Strength – 340~420 MPa
  7. Ordinary Carbon Steel (Q275): Shear Strength – 400~500 MPa
  8. Carbon Tool Steel (08F): Shear Strength – 220~310 MPa (annealed)
  9. Carbon Tool Steel (10F): Shear Strength – 260~360 MPa
  10. Carbon Tool Steel (15F): Shear Strength – 220~340 MPa
  11. Carbon Tool Steel (08): Shear Strength – 260~340 MPa
  12. Carbon Tool Steel (10): Shear Strength – 250~370 MPa
  13. Carbon Tool Steel (15): Shear Strength – 270~380 MPa
  14. Carbon Tool Steel (20): Shear Strength – 280~400 MPa
  15. Carbon Tool Steel (25): Shear Strength – 320~440 MPa
  16. Carbon Tool Steel (30): Shear Strength – 360~480 MPa
  17. Carbon Tool Steel (35): Shear Strength – 400~520 MPa
  18. Carbon Tool Steel (40): Shear Strength – 420~540 MPa
  19. Carbon Tool Steel (45): Shear Strength – 440~560 MPa
  20. Carbon Tool Steel (50): Shear Strength – 440~580 MPa (normalized)
  21. Carbon Tool Steel (55): Shear Strength – 550 MPa (≥670)
  22. Carbon Tool Steel (60): Shear Strength – 600 MPa (≥730)
  23. Carbon Tool Steel (70): Shear Strength – 600 MPa (≥760)
  24. Carbon Tool Steel (T7~T12, T7A~T12A): Shear Strength – 600 MPa (annealed), 600~950 MPa (cold hardened)
  25. High-Quality Carbon Steel (10Mn): Shear Strength – 320~460 MPa (annealed)
  26. High-Quality Carbon Steel (65Mn): Shear Strength – 600 MPa
  27. Alloy Structural Steel (25CrMnSiA, 25CrMnSi): Shear Strength – 400~560 MPa (low-temperature annealed)
  28. Alloy Structural Steel (30CrMnSiA, 30CrMnSi): Shear Strength – 440~600 MPa
  29. Quality Spring Steel (60Si2Mn, 60Si2MnA, 65SiWAl): Shear Strength – 720 MPa (low-temperature annealed), 640~960 MPa (cold hardened)
  30. Stainless Steel (1Cr13): Shear Strength – 320~380 MPa (annealed)
  31. Stainless Steel (2Cr13): Shear Strength – 320~400 MPa
  32. Stainless Steel (3Cr13): Shear Strength – 400~480 MPa
  33. Stainless Steel (4Cr13): Shear Strength – 400~480 MPa
  34. Stainless Steel (1Cr18Ni19, 2Cr18Ni19): Shear Strength – 460~520 MPa (heat-treated), 800~880 MPa (rolled, cold-hardened)
  35. Stainless Steel (1Cr18Ni9Ti): Shear Strength – 430~550 MPa (Heat-treated softened)

(2) Shear Strength for Non-ferrous Metals

Continuing with the shear strength information for Non-ferrous Metals as listed in the “Metal Mechanical Properties Chart” on MachineMfg.com:

  1. Aluminum (1070A, 1050A, 1200):
    • Annealed: Shear Strength – 80 MPa
    • Cold Hardened: Shear Strength – 100 MPa
  2. Aluminum Manganese Alloys (3A21):
    • Annealed: Shear Strength – 70~100 MPa
    • Semi-Cold Hardened: Shear Strength – 100~140 MPa
  3. Aluminum-Magnesium-Copper Alloy (SA02):
    • Annealed: Shear Strength – 130~160 MPa
    • Semi-Cold Hardened: Shear Strength – 160~200 MPa
  4. High Strength Aluminum-Magnesium-Copper Alloy (7A04):
    • Annealed: Shear Strength – 170 MPa
    • Hardened and Artificially Aged: Shear Strength – 350 MPa
  5. Magnesium-Manganese Alloy (MB1, MB8):
    • Annealed: Shear Strength – 120~140 MPa
    • Cold Hardened: Shear Strength – 190~200 MPa
  6. Rigid Aluminum (2Al12):
    • Annealed: Shear Strength – 105~150 MPa
    • Hardened with Natural Aging: Shear Strength – 280~310 MPa
    • Cold Hardened after Hardening: Shear Strength – 280~320 MPa
  7. Pure Copper (T1, T2, T3):
    • Soft: Shear Strength – 160 MPa
    • Hard: Shear Strength – 240 MPa
  8. Brass (H62):
    • Soft: Shear Strength – 260 MPa
    • Semi-Hard: Shear Strength – 300 MPa
    • Hard: Shear Strength – 420 MPa
  9. Brass (H68):
    • Soft: Shear Strength – 240 MPa
    • Semi-Hard: Shear Strength – 280 MPa
    • Hard: Shear Strength – 400 MPa
  10. Lead Brass (HPb59-1):
    • Soft: Shear Strength – 300 MPa
    • Hard: Shear Strength – 400 MPa
  11. Manganese Brass (HMn58-2):
    • Soft: Shear Strength – 340 MPa
    • Semi-Hard: Shear Strength – 400 MPa
    • Hard: Shear Strength – 520 MPa
  12. Tin-Phosphorus Bronze (QSn4-4-2.5, QSn4-3):
    • Soft: Shear Strength – 260 MPa
    • Hard: Shear Strength – 480 MPa
    • Extra-Hard: Shear Strength – 500 MPa
  13. Aluminum Bronze (QAl17):
    • Annealed: Shear Strength – 520 MPa
    • Un-Annealed: Shear Strength – 560 MPa
  14. Aluminum Manganese Bronze (QAl9-2):
    • Soft: Shear Strength – 360 MPa
    • Hard: Shear Strength – 480 MPa
  15. Silicon-Manganese Bronze (QBi3-1):
    • Soft: Shear Strength – 280~300 MPa
    • Hard: Shear Strength – 480~520 MPa
    • Extra-Hard: Shear Strength – 560~600 MPa
  16. Beryllium Bronze (QBe2):
    • Soft: Shear Strength – 240~480 MPa
    • Hard: Shear Strength – 520 MPa
  17. Cupro-Nickel (B19):
    • Soft: Shear Strength – 240 MPa
    • Hard: Shear Strength – 360 MPa
  18. Nickel Silver (BZn15-20):
    • Soft: Shear Strength – 280 MPa
    • Hard: Shear Strength – 400 MPa
    • Extra-Hard: Shear Strength – 520 MPa
  19. German Silver (BZn15-20):
    • Soft: Shear Strength – 300 MPa
    • Hard: Shear Strength – 480 MPa
    • Extra-Hard: Shear Strength – 560 MPa
  20. Zinc (Zn-3 to Zn-6):
    • Shear Strength – 120~200 MPa
  21. Lead (Pb-3 to Pb-6):
    • Shear Strength – 20~30 MPa
  22. Tin (Sn1 to Sn4):
    • Shear Strength – 30~40 MPa
  23. Titanium Alloy (TA2):
    • Annealed: Shear Strength – 360~480 MPa
  24. Titanium Alloy (TA3):
    • Shear Strength – 440~600 MPa
  25. Titanium Alloy (TA5):
    • Shear Strength – 640~680 MPa
  26. Magnesium Alloy (MB1, MB8 in Cold State):
    • MB1: Shear Strength – 120~140 MPa
    • MB8: Shear Strength – 150~180 MPa
  27. Magnesium Alloy (MB1, MB8 Preheated at 300°C):
    • MB1: Shear Strength – 30~50 MPa
    • MB8: Shear Strength – 50~70 MPa
  28. Silver:
    • Shear Strength – 180 MPa
  29. Fungible Alloy (Ni29Co18):
    • Shear Strength – 400~500 MPa
  30. Copper Constantan (BMn40-1.5):
    • Soft: Shear Strength – 400~600 MPa
    • Hard: Shear Strength – 650 MPa
  31. Tungsten:
    • Annealed: Shear Strength – 720 MPa
    • Un-Annealed: Shear Strength – 1491 MPa
  32. Molybdenum:
    • Annealed: Shear Strength – 20~30 MPa
    • Un-Annealed: Shear Strength – 32~34 MPa

This comprehensive list covers a wide range of metals, providing essential information for applications where shear strength is a critical factor. This information is crucial for engineers and designers in selecting the appropriate materials for various applications based on shear strength requirements.

What are the international standards for steel shear strength testing?

The international standards for steel shear strength testing encompass the ASTM and ISO series. In the United States, there are multiple ASTM standards used for measuring shear strength, including ASTMB831, D732, D4255, D5379, and D7078. Internationally, ISO shear strength testing standards include ISO3597, 12579, and 14130. Additionally, there is the ISO 10123 standard, which is specific to steel.

Therefore, the primary international standards for steel shear strength testing are the relevant ones within the ASTM and ISO series.

What are the differences in shear strength between different types of steel (such as 45# steel, Q235 steel) in practical applications, and what causes these differences?

The differences in shear strength between 45# steel and Q235 steel in practical applications and their causes mainly reflect in their chemical compositions, mechanical properties, and applicable scenarios.

Firstly, in terms of chemical composition, Q235 steel is a low-carbon steel, with its carbon content around 0.2%, while 45# steel is a medium-carbon steel, with a carbon content of approximately 0.45%. These differences in chemical composition lead to variations in the performance of the two types of steel.

Secondly, regarding mechanical properties, the yield strength of Q235 steel is about 235MPa, whereas that of 45# steel is higher, reaching up to 355MPa. This indicates that 45# steel has a stronger ability to resist minor plastic deformation, meaning it has higher strength and hardness. Moreover, the permissible shear stress of Q235 steel is 98MPa, while the shear strength range of Q235 material is from 141 to 188 MPa, further demonstrating the relatively weaker shear performance of Q235 steel.

Finally, since 45# steel can enhance its strength and hardness after heat treatment through quenching, it is more suitable for scenarios requiring high load-bearing and good wear resistance, such as manufacturing mechanical parts. In contrast, due to its higher plasticity and lower strength, Q235 steel is more suitable for stretching, rolling processing, like making profiles, plates, etc.

Don't forget, sharing is caring! : )
Shane
Author

Shane

Founder of MachineMFG

As the founder of MachineMFG, I have dedicated over a decade of my career to the metalworking industry. My extensive experience has allowed me to become an expert in the fields of sheet metal fabrication, machining, mechanical engineering, and machine tools for metals. I am constantly thinking, reading, and writing about these subjects, constantly striving to stay at the forefront of my field. Let my knowledge and expertise be an asset to your business.

Up Next

Mastering CAD/CAM: Essential Technologies Explained

Basic Concepts of Computer-Aided Design and Computer-Aided Manufacturing Computer-aided design and computer-aided manufacturing (CAD/CAM) is a comprehensive and technically complex system engineering discipline that incorporates diverse fields such as computer [...]

Virtual Manufacturing Explained: Concepts & Principles

Concept of Virtual Manufacturing Virtual Manufacturing (VM) is the fundamental realization of the actual manufacturing process on a computer. It utilizes computer simulation and virtual reality technologies, supported by high-performance [...]

Understanding Flexible Manufacturing Systems: A Guide

A Flexible Manufacturing System (FMS) typically employs principles of systems engineering and group technology. It connects Computer Numerical Control (CNC) machine tools (processing centers), coordinate measuring machines, material transport systems, [...]

Exploring 4 Cutting-Edge Nanofabrication Techniques

Just as manufacturing technology plays a crucial role in various fields today, nanofabrication technology holds a key position in the realms of nanotechnology. Nanofabrication technology encompasses numerous methods including mechanical [...]

Ultra-Precision Machining: Types and Techniques

Ultra-precision machining refers to precision manufacturing processes that achieve extremely high levels of accuracy and surface quality. Its definition is relative, changing with technological advancements. Currently, this technique can achieve [...]

Exploring High-Speed Cutting: Tech Overview & Application

Cutting machining remains the most prominent method of mechanical processing, holding a significant role in mechanical manufacturing. With the advancement of manufacturing technology, cutting machining technology underwent substantial progress towards [...]

Top 7 New Engineering Materials: What You Need to Know

Advanced materials refer to those recently researched or under development that possess exceptional performance and special functionalities. These materials are of paramount significance to the advancement of science and technology, [...]

Metal Expansion Methods: A Comprehensive Guide

Bulge forming is suitable for various types of blanks, such as deep-drawn cups, cut tubes, and rolled conical weldments. Classification by bulge forming medium Bulge forming methods can be categorized [...]
MachineMFG
Take your business to the next level
Subscribe to our newsletter
The latest news, articles, and resources, sent to your inbox weekly.
© 2024. All rights reserved.

Contact Us

You will get our reply within 24 hours.