RECOMMENDED

Laser Welding Machine

Handheld Laser Welding Machine

Handheld Laser Welding Machine

It has the advantages of simple structure, fast operation, flexible welding and strong welding penetration, and can be competent for welding at various complex angles

Automatic Laser Welding Machine

Automatic Laser Welding Machine

It has high working efficiency, faster speed than general laser welding machine, with good welding effect and stable performance

Robotic Laser Welding Machine

Robotic Laser Welding Machine

The combination of industrial robot and welding laser for three-dimensional laser welding greatly meets the market demand.

Still not finding your required machine?

Contact Our Experts For A Professional & Cost-Effective Solution

Welding Distortion Basics And How To Control It

The shortcomings of welded structures are mostly reflected in the problems of welded joints, mainly in the following aspects:

1) The welding process is an uneven heating and cooling process.

The welding structure must have welding residual stress and distortion, which not only affects the overall dimension and appearance quality of the welding structure, but also brings a lot of trouble to the continuous processing after welding, and even directly affects the strength of the welding structure.

2) Because the welded joint has to go through three stages: smelting, solidification and heat treatment.

3) Welding will change some properties of the material.

Welding Distortion

Welding stress and distortion

Due to local high temperature heating, the temperature distribution on the weldment is uneven, resulting in welding stress and distortion in the welding structure.

Welding stress is the main cause of brittle fracture, fatigue fracture, stress corrosion fracture and instability failure.

Welding distortion makes the shape and dimensional accuracy of the structure difficult to meet the technical requirements, and directly affects the manufacturing quality and service performance of the structure.

Generation of welding stress and distortion

1. Basic knowledge of welding stress and distortion

1. Distortion

The shape and size of an object change under the action of external force or temperature

2. Stress

The interaction force existing in the interior of an object, caused by external forces or other factors, is called internal force. The internal force per unit cross-sectional area of an object is called stress.

3. Welding stress and welding distortion

Welding stress is the internal stress existing in the weldment during and after the welding process. The change of weldment size caused by welding is called welding distortion.

2. Causes of welding stress and distortion

1. Uneven heating of weldments

(1) Stress and distortion caused by central heating of long strip (similar to surfacing)

Stress and distortion of steel strip center during heating and cooling

Stress and distortion of steel strip center during heating and cooling

(2) Stress and distortion caused by heating on one side of long strip (equivalent to plate edge surfacing)

Stress and distortion during heating and cooling on one side of steel plate edge

Stress and distortion during heating and cooling on one side of steel plate edge

2. Shrinkage of weld metal

3. Change of metal structure

4. Rigidity and restraint of weldment

Welding distortion

1. Types of welding distortion and its influencing factors

Welding distortion can be divided into five basic forms: shrinkage distortion, angular distortion, bending distortion, wave distortion and deformation distortion.

Basic forms of welding distortion

Basic forms of welding distortion

1). Shrinkage distortion

The phenomenon that the size of weldment is shorter than that before welding is called shrinkage distortion.

Longitudinal and transverse shrinkage distortion

Longitudinal and transverse shrinkage distortion

(1) Longitudinal shrinkage distortion

(2) Transverse shrinkage distortion

2). Angular distortion

The root cause of angular distortion is the uneven distribution of transverse shrinkage along the plate thickness.

Angular distortion of several joints

Angular distortion of several joints

Angular distortion of T-joint

Angular distortion of T-joint

3). Bending distortion

The bending distortion is caused by the non coincidence or asymmetry between the center line of the weld and the neutral axis of the structural section, and the uneven distribution of the shrinkage of the weld along the width of the weldment.

(1) Bending distortion caused by longitudinal shrinkage

Bending distortion caused by longitudinal shrinkage of weld

Bending distortion caused by longitudinal shrinkage of weld

(2) Bending distortion caused by transverse shrinkage

Bending distortion caused by transverse shrinkage of weld

Bending distortion caused by transverse shrinkage of weld

4). Wave distortion

Wave distortion often occurs in the welding process of thin plates with a thickness of less than 6mm, which is also called instability distortion.

Wave distortion caused by weld fillet distortion

Wave distortion caused by weld fillet distortion

5). Distortion

The main cause of distortion is the uneven distribution of weld fillet distortion along the weld length.

Distortion of I-beam

Distortion of I-beam

2. Measures to control welding distortion

1). Design measures

(1) Select reasonable weld shape and size

1) Select the smallest weld size.

Cross joint with the same bearing capacity

Cross joint with the same bearing capacity

2) Select reasonable groove form.

Groove of T-joint

Groove of T-joint

(2) Reduce the number of welds

As long as allowed, profiles and stamping parts are mostly used; Where there are many and dense welds, the cast weld joint structure can be adopted, which can reduce the number of welds.

In addition, properly increasing the thickness of the wall plate to reduce the number of ribs, or using the profiled structure instead of the rib structure, is beneficial to prevent the distortion of the thin plate structure.

(3) Reasonable arrangement of weld position

Beam, column and other welded components often have bending distortion due to the eccentric configuration of weld.

Weld arrangement of box structure

Weld arrangement of box structure

Reasonably arrange the weld position to prevent distortion

Reasonably arrange the weld position to prevent distortion

2). Process measures

(1) Allowance method

(2) Inverse distortion method

Inverse distortion method for flat plate butt welding

Inverse distortion method for flat plate butt welding

(3) Rigid fixation method

1) Fix the weldment on the rigid platform.

Rigid fixation during thin plate splicing

Rigid fixation during thin plate splicing

2) The weldment is combined into a more rigid or symmetrical structure.

Rigid fixation and anti distortion of T-beam

Rigid fixation and anti distortion of T-beam

3) The welding fixture is used to increase the rigidity and restraint of the structure.

Rigid fixation during butt splicing

Rigid fixation during butt splicing

4) Use temporary supports to increase the restraint of the structure.

Temporary support during shield welding

Temporary support during shield welding

(4) Select reasonable assembly and welding sequence.

The assembly welding sequence has a great influence on the distortion of welded structure.

1) As long as the conditions permit, the large and complex welded structure is divided into several parts with simple structure, welded separately, and then assembled as a whole.

2) The weld under welding shall be close to the neutral axis of the structural section in the daytime.

Assembly and welding of main beam

Assembly and welding of main beam

3) For the structure with asymmetric arrangement of welds, the side with few welds shall be welded first during assembly welding.

Welding sequence of upper die of press

Welding sequence of upper die of press

4) The structure with symmetrical arrangement of welds shall be welded symmetrically by even welders.

Welding sequence of cylinder butt weld

Welding sequence of cylinder butt weld

5) When welding long welds (more than 1m), the direction and sequence shown in the figure below can be used to reduce the shrinkage distortion after welding.

welding long welds

(5) Reasonably select welding methods and welding process parameters

Welding of asymmetric section structure

Welding of asymmetric section structure

(6) Heat balance method

Use heat balance method to prevent welding distortion

Use heat balance method to prevent welding distortion

(7) Heat dissipation method

Heat dissipation method

3. Method for correcting welding distortion

1). Manual correction

2). Mechanical correction method

Correction of bending distortion of beam by mechanical correction method

Correction of bending distortion of beam by mechanical correction method

3). Flame heating correction method

The ways of flame heating include point heating, linear heating and triangular heating.

(1) Spot heating

Spot heating

(2) Linear heating

Linear heating

(3) Triangular heating

Flame correction of bending distortion of I-beam

Flame correction of bending distortion of I-beam

The correction of welding distortion by flame heating depends on the following three factors:

(1) Heating mode

(2) Heating position

(3) Heating temperature and area of heating zone

Welding residual stress

1. Classification of welding residual stress

1). According to the causes of stress

(1) Thermal stress

(2) Corresponding stress

(3) Plastic strain stress

2). According to the time of stress existence

(1) Welding instantaneous stress

(2) Welding residual stress

2. Distribution of welding residual stress

1). Distribution of longitudinal residual stress σx

Distribution of butt joint on weld 0x cross section

Distribution of butt joint on weld 0x cross section

2). Distribution of transverse residual stress σy

(1) The transverse stress caused by longitudinal shrinkage of welding and its adjacent plastic distortion zone is σ’y

Distribution of transverse residual stress σy

(2) Mechanical stress caused by transverse shrinkage year σ” y

Distribution of σ'' Y during welding in different directions

Distribution of σ” Y during welding in different directions

3. Influence of welding residual stress on welding structure

1). Impact on structural strength

2). Influence on the dimensional accuracy of weldment processing

Internal stress release and distortion caused by machining

Internal stress release and distortion caused by machining

3). Influence on the stability of compression members

4. Measures to control welding residual stress

1). Design measures

1) Minimize the number and size of welds on the structure.

2) Avoid excessive concentration of welds, and keep sufficient distance between welds.

Welding of vessel nozzle

Welding of vessel nozzle

3) The joint form with less rigidity shall be adopted.

Measures to reduce the rigidity of joints

Measures to reduce the rigidity of joints

2). Process measures

1) Adopt reasonable assembly welding sequence and direction.

① When welding the weld on a plane, it shall be ensured that the longitudinal and transverse shrinkage of the weld can be relatively free.

the longitudinal and transverse shrinkage of the weld can be relatively free

Reasonable assembly and welding sequence of splicing welds

② The weld with the largest shrinkage shall be welded first.

Welding sequence of duplex beam structure with cover plate

Welding sequence of duplex beam structure with cover plate

③ The weld with the largest stress during operation shall be welded first.

Welding sequence of butt I-beam

Welding sequence of butt I-beam

④ When the plane cross weld is welded, it is easy to produce large welding stress at the intersection of the weld.

Welding sequence of plane cross welds

Welding sequence of plane cross welds

⑤ The structure where butt welds and fillet welds intersect.

The structure where butt welds and fillet welds intersect

2) Preheating method.

3) Cold welding.

4) Reduce the restraint of welds.

Reduce local stiffness and internal stress

Reduce local stiffness and internal stress

Schematic diagram of heating stress relief zone method

Schematic diagram of heating “stress relief zone” method

5. Method for eliminating or reducing welding residual stress

1). Heat treatment method

(1) Integral heat treatment

(2) Local heat treatment

2). Mechanical stretching method

3). Temperature difference stretching method

Schematic diagram of eliminating residual stress by temperature difference tensile method

Schematic diagram of eliminating residual stress by “temperature difference tensile method”

4). Hammer weld

5). Vibration method

6. Determination of welding residual stress

1). Mechanical method

(1) Slitting method

(2) Drilling method

2). Physical methods

(1) Magnetic method

(2) X-ray diffraction

(3) Ultrasonic method

Sharing is caring!

Get In Touch

If you want to get the quotation or have any questions, pls feel free to get in touch with us.

Leave a Comment

Your email address will not be published. Required fields are marked *

error: Content is protected !!
Scroll to Top

Keep in touch

Fill in your details and we’ll get back to you in no time.